STUDENTS DO NOT OPEN THIS TEST OR BEGIN UNTIL INSTRUCTED TO START

2015 Examination for the

National Agricultural Technology and Mechanical Systems

Career Development Event
Name \qquad
Print Name Legibly

Answer Key for Examination

Order and Point Assignment for Exam Questions (2 points each)

1. Machinery	6. Environmental	11. Structural	16. Energy	21. Electrical		
2. Electrical	7. Machinery	12. Environmental	17. Structural	22. Energy		
3. Energy	8. Electrical	13. Machinery	18. Environmental	23. Structural		
4. Structural	9. Energy	14. Electrical	19. Machinery	24. Environmental		
5. Environmental	10. Structural	15. Energy	20. Electrical	25. Machinery		MACHINERY \& EQUIPMENT SYSTEMS
:---						
ELECTRICAL SYSTEMS						
ENERGY SYSTEMS						
STRUCTURAL SYSTEMS						
ENVIRONMENTAL \& NATURAL RESOURCE SYSTEMS						

This exam begins on the back of this sheet.

2015 Written Examination for the National Agricultural Technology \& Mechanical Systems Career Development Event

Mark all answers on the Scantron sheet using a pencil. Read each question carefully and mark the single correct answer on the Scantron sheet. Each student needs a calculator to complete this examination, but calculators may not be shared between students. Information written on this exam will not be graded.

1. Machinery: A tractor's power takeoff produces $\mathbf{3 2 5}$ horsepower and turns at $\mathbf{1 0 0 0}$ revolutions per minute. Approximately how much torque, in foot-pounds, can this PTO produce?

Torque in foot-pounds $=\underline{\text { PTO Horsepower } \times 5252}$
Revolutions / Minute

```
325 hp x 5252 \div1000 rpms = 1706.9 ft-lbs
```

B. 1706.9 foot-pounds
C. 1841.2 foot-pounds
D. 1927.5 foot-pounds
2. Electrical: A water supply station used to refill pesticide tanks has a 4 horsepower electrical pump that operates at 120 volts. If the motor is 85 percent efficient and has a 0.9 power factor, what is the approximate amperage of the motor? horsepower $=$ voltage x amperage x power factor x efficiency

1 horsepower $=746$ Watts
A. $\quad 8.1 \mathrm{amps}$
B. 27.6 amps
C. 32.5 amps

$$
4 \mathrm{hp}=\frac{120 \mathrm{~V} \times \mathrm{A} \times 0.9 \times 0.85}{746} \quad \mathrm{Amps}=32.50544662 \mathrm{amps}
$$

D. 253.6 amps
3. Energy: A 200 horsepower eight-cylinder engine is operating at 6865 feet above sea level. What approximate horsepower can be produced by the engine when the engine's power is reduced 2.45 percent for each 1000 feet of elevation above sea level?
A. 166.4 horsepower
B. 194.2 horsepower

200 horsepower $-[200 \mathrm{hp} \times 6865 \mathrm{ft} \times(0.0245 / 1000 \mathrm{ft})]=166.3615 \mathrm{hp}$
C. 136.4 horsepower
D. 274.2 horsepower
4. Structural: A pesticide spray tank has a cylindrical shape that is $\mathbf{7}$ feet $\mathbf{9}$ inches long with a radius of 2 feet. What is the approximate total storage capacity of the tank in gallons?
1 gallon $=231$ cubic inches $\quad 1$ foot $=12$ inches
$\pi=3.14 \quad$ Diameter $=2 \times$ (radius)
Volume of a Cylinder $=(\pi) \times(\text { radius })^{2} \times$ (length)
1728 cubic inches $=1$ cubic foot
A. 97 gallons
B. 728 gallons
C. 972 gallons
$(3.14) \times\left(2^{\prime}\right)^{2} \times\left(7.75^{\prime}\right) \times 1728 \mathrm{in}^{3} / 1 \mathrm{ft}^{3} \times 1 \mathrm{gal} / 231 \mathrm{in}^{3}=728.1537662 \mathrm{gal}$
D. 1,438 gallons
5. Environmental: A rectangular shaped plastic hopper is used to transport granular pesticide in bulk. This hopper is transported on a trailer with a 5000 -pound maximum load carrying capacity. The internal dimensions of the hopper are 6.5 feet wide, 8.75 feet long and 4.25 feet deep. What is the maximum weight in pounds per cubic foot (approximate value) that granular pesticide can weigh, completely fill the hopper, and still transport within safe load carrying limits? 1 gallon $=231$ cubic inches $\quad 1$ cubic-foot $=1728$ cubic-inches
Volume of rectangular prism $=$ Length \times Width \times Height
A. $20.7 \mathrm{lbs} / \mathrm{ft}^{3}$
B. $23.6 \mathrm{lbs} / \mathrm{ft}^{3}$

C. $27.1 \mathrm{lbs} / \mathrm{ft}^{3}$
D. $99.2 \mathrm{lbs} / \mathrm{ft}^{3}$

6. Environmental: What is the approximate annual power consumption (kilowatt-hours, kWh) of a 240 volt electrical installation with 36 lights, each light using 0.95 amps and operating an average of 9 hours and 30 minutes each day, and 22.5 days per month? 1 year $=12$ months Kilowatt $=1000$ Watts Watts $=$ Volts \times Amps \quad Volts $=$ Amps \times Resistance in Ohms \quad Kilowatt-hours $=$ Kilowatts \times Hours
A. $\quad 1,717.5 \mathrm{kWh}$

240 volts x $0.95 \mathrm{amps} /$ load x 36 loads x 9.5 hrs/day x 22.5 days/ mth x $12 \mathrm{mths} / \mathrm{yr} \times 1 \mathrm{kWh} / 1000$ Watts
B. $2,169.3 \mathrm{kWh}$
C. $20,610.3 \mathrm{kWh}$
D. $21,053.5 \mathrm{kWh}$
7. Machinery: Each cylinder in an eight cylinder tractor engine has a bore (diameter) of 4.85 inches and a piston stroke of 6.25 inches. What is the approximate total displacement of this engine in liters?
Area of a cylinder bore $=(\pi) \times(\text { radius })^{2} \quad \pi=3.14 \quad$ radius $=($ diameter $\div 2)$
Volumetric displacement of a single cylinder $=$ (length of piston stroke) x (the area of the cylinder bore)
1 liter $=61$ cubic inches $\quad 1$ cubic inch $=0.0164$ liter
A. 1.9 liters
B. 15.1 liters

```
8 cyl }\times3.14\times(4.85\textrm{in}/2\mp@subsup{)}{}{2}\times6.25\textrm{in}\times(1\textrm{L}/61\mp@subsup{\textrm{in}}{}{3})=15.135379\textrm{L
```

C. 60.5 liters
D. 900.5 liters
8. Electrical: An inefficient electrical motor (identified as motor A) is to be replaced with a new high efficiency motor (identified as motor B). Motor A was operated 8 hours and 30 minutes per day, 322 days each year, and its annual electrical bill averaged $\$ 18,983$. The purchase price for motor B is $\mathbf{\$ 1 , 3 1 8}$ and the installation charge is $\mathbf{\$ 3 9 0}$. Motor B will be operated the same number of hours as motor A and will have an average cost of $\$ 5.87$ per hour to operate. Approximately how many months must motor B operate to payback the purchase and installation cost of the new motor?

1 year $=12$ months $\quad 1$ day $=24$ hours $\quad 1$ year $=365$ days
Equipment Payback in months $=$ total cost for new high efficient equipment
average saving in energy cost per month
A. 7 months
B. 84 months
C. 125 months

Payback $=\ldots \quad(\$ 1318+\$ 390)=7.026854689$ _mths $(\$ 18,983 / \mathrm{yr} \times 1 \mathrm{yr} / 12 \mathrm{mths})-(\$ 5.87 / \mathrm{hr} \times 8.5 \mathrm{hrs} / \mathrm{day} \times 322 \mathrm{days} / \mathrm{yr} \times 1 \mathrm{yr} / 12 \mathrm{mths})$
D. 294 months
9. Energy: An available electronic thermometer is calibrated in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$. A pesticide label specifies that the maximum allowable temperature for spray applications is $\mathbf{7 5}$ degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$. What is the approximate temperature equivalent in degrees Celsius?
${ }^{\circ} \mathrm{F}=\left(9 / 5{ }^{\circ} \mathrm{C}\right)+32 \quad{ }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right)$
Water freezes at $32{ }^{\circ} \mathrm{F}$
Water boils at $212^{\circ} \mathrm{F}$
A. $\quad 9.7{ }^{\circ} \mathrm{C}$
B. $23.9{ }^{\circ} \mathrm{C}$

$$
{ }^{\circ} \mathrm{C}=5 / 9 \times\left(75^{\circ} \mathrm{F}-32\right)=23.888888{ }^{\circ}{ }^{\circ} \mathrm{C}
$$

C. $41.7^{\circ} \mathrm{C}$
D. $167.0{ }^{\circ} \mathrm{C}$
10. Structural: Steel angle iron is sold for $\$ 2.11$ per linear foot, steel rod is sold for $\$ 1.91$ per linear foot, and steel pipe is sold for $\mathbf{\$ 3 . 1 9}$ per linear foot. If $\mathbf{2 8 . 5}$ feet of angle iron, $\mathbf{2 3}$ feet of rod, and $\mathbf{1 5 . 5}$ feet of pipe are purchased, what is the approximate total price for the metal before taxes?
A. $\$ 60.15$
B. $\$ 93.36$
C. $\$ 109.58$

```
28.5' x $ 2.11/ft = $ 60.135
```

28.5' x \$ 2.11/ft = \$ 60.135
23' x \$ 1.91/ft = \$ 43.93
23' x \$ 1.91/ft = \$ 43.93
15.5' x \$ 3.19/ft = \$ 49.445 Total = \$ 153.51

```
15.5' x $ 3.19/ft = $ 49.445 Total = $ 153.51
```

D. $\$ 153.51$
11. Structural: Which of the following quantities of lumber has the greatest number of board-feet?

1 board-foot $=144$ cubic inches $\quad 1$ square foot $=144$ square inches
A. 52 boards measuring 1 inches by 6 inches by 14 feet
B. 27 boards measuring 2 inch by 8 inches by 10 feet
C. 45 boards measuring 2 inches by 6 inches by 8 feet
D. 46 boards measuring 1 inch by 8 inches by 12 feet

Nominal Measurement Comparison (same answer for actual)
$52 \times 1^{\prime \prime} \times 6^{\prime \prime} \times 14^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=364 \mathrm{bd}-\mathrm{ft}$
$27 \times 2^{\prime \prime} \times 8^{\prime \prime} \times 10^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=360 \mathrm{bd}-\mathrm{ft}$
$45 \times 2^{\prime \prime} \times 6^{\prime \prime} \times 8^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=360 \mathrm{bd}-\mathrm{ft}$
$46 \times 1^{\prime \prime} \times 8^{\prime \prime} \times 12^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=368 \mathbf{b d}-\mathrm{ft}$
12. Environmental: A concrete slab will be installed to prevent contamination of the ground at a mixing and cleaning site for pesticide equipment. The inside dimensions of the slab's form boards are 24 feet wide by 14 feet long and the concrete forms provide an approximate depth of 5 inches. Order an additional 10 percent concrete to allow for any inconsistencies in the ground surface and note that pre-mixed concrete is sold/delivered in quarter-yard quantities (such as: $3 \mathrm{yd} 3,6.25 \mathrm{yd} 3,10.75 \mathrm{yd} 3$, 15.5 yd3). Approximately how many cubic yards (yd^{3}) of pre-mixed concrete should be ordered?

1 cubic yard $=27$ cubic feet $\quad 1$ cubic foot $=1728$ cubic inches $\quad 1$ foot $=12$ inches
Volume of rectangular prism $=$ Length \times Width \times Height
A. $\quad 3.50 \mathrm{yd}^{3}$
B. $5.25 \mathrm{yd}^{3}$

$$
24^{\prime} \times 14^{\prime} \times 5^{\prime \prime} \times\left(1 \mathrm{ft} / 12^{\prime \prime}\right) \times\left(1 \mathrm{yd}^{3} / 27 \mathrm{ft}^{3}\right) \times(1.10)=5.7037 \mathrm{yd}^{3} \rightarrow 5.75 \mathrm{yd}^{3}
$$

C. $5.75 \mathrm{yd}^{3}$
D. $68.50 \mathrm{yd}^{3}$
13. Machinery: Approximately how many acres are in a rectangular field measuring 1109 meters by 928 yards? $\quad 1$ acre $=43,560$ square feet $\quad 1$ hectare $=2.47$ acres $\quad 1$ acre $=0.4045$ Hectares Area of Rectangle $=$ length \times width $\quad 1$ yard $=3$ feet $\quad 1$ foot $=0.3048$ meter
A. 2.4 acres
B. 23.6 acres

```
1109 m x 1 ft / 0.3048 m x 928 yds x 3 ft/1 yd x 1 ac / 43,560 ft }\mp@subsup{}{}{2}=232.5401474 a
```

C. 232.5 acres
D. 2325.4 acres
14. Electrical: A pesticide boom sprayer with eight spray nozzles is mounted on the back of an ATV (4wheeler) and the pump motor is powered by the 12 volt battery of the vehicle. The spray pump's range of operation for spraying applications is 20 to 45 pounds per square inch (PSI), but there is a $\mathbf{2 0 \%}$ loss in pressure due to the spray system's components. If each nozzle must deliver a range of 0.02 to 0.04 gallons per minute (GPM), which of the following motors is most economical to purchase and also has the appropriate capacity and specifications for this boom sprayer.

VDC $=$ direct current voltage \quad VAC $=$ alternating current voltage
A. Motor A, rated at 12 VDC, cost $\$ 219$, and delivers up to 5 GPM at 100 PSI
B. Motor B, rated at 12 VDC , cost $\$ 149$, and delivers up to 2 GPM at 65 PSI
C. Motor C, rated at 12 VDC , cost $\$ 119$, and delivers up to 3.2 GPM at 45 PSI
D. Motor D, rated at 12 VAC , cost $\$ 93$, and delivers up to 2.1 GPM at 65 PSI

Max volume required $=$ 8 nozzles $\times 0.04$ GPM $=$ 0.32 GPM

Must be DC voltage and requires at least $1.2 \% \times 45$ PSI $=54$ PSI to allow for system pressure losses at max pressure
15. Energy: A hot waterline is used 6 hours and 45 minutes each day, has three different water leaks, and the amount of water lost at each leak has been measured during a 30 minute time period. The three quantities of water from the leaks are (a) 75 ounces, (b) 68 ounces, and (c) 111 ounces. Approximately how many gallons of water will be lost from the waterline during 100 days of operation? 1 gallon $=128$ ounces $\quad 24$ hours $=1$ day $\quad 60$ minutes $=1$ hour
A. 2,679 gallons
B. 13,395 gallons
C. 44,648 gallons

$$
\begin{aligned}
& {[(75 \mathrm{oz}+68 \mathrm{oz}+111 \mathrm{oz}) \div 30 \mathrm{~min}] \times(60 \mathrm{~min} / 1 \mathrm{hr}) \times(6.75 \mathrm{hrs} / \mathrm{day}) \times 100 \text { days } \times(1 \mathrm{gal} / 128 \mathrm{oz}) } \\
&=\underline{2678.90625 \mathrm{gals} / 100 \text { days }}
\end{aligned}
$$

16. Energy: A water pump has a 4.75-inch diameter pulley that must turn at 800 revolutions per minute (rpm). The shaft of a electric motor rotates at 1725 rpm and powers the belt that operates the pump. What is the approximate diameter of the pulley needed on the motor shaft to turn the pump at 800 rpms? Pulley Size Formula: (Diameter of Pulley $1 \times$ Speed of Pulley 1) $=$ (Diameter of Pulley $2 \times$ Speed of Pulley 2)
A. 2.2 inches
B. 3.3 inches
C. 4.4 inches
D. 5.5 inches
17. Structural: There is concern that the numerical values marked on a $\mathbf{5 0 0}$ gallon pesticide spray tank are inaccurate and water weight will be used to determine and confirm tank volume values. The weight of the empty tank is 92 pounds. What should the approximate combined weight (pounds, lbs) be for the tank and water if the test weights are done at $\mathbf{1 0 0}$ gallons, $\mathbf{2 5 0}$ gallons and $\mathbf{5 0 0}$ gallons? 1 gallon of water $=8.34$ pounds
A. 834 lbs for 100 gallons; 2085 lbs for 250 gallons; 4170 lbs for 500 gallons
B. 926 lbs for 100 gallons; 2177 lbs for 250 gallons; 4170 lbs for 500 gallons
C. 926 lbs for 100 gallons; 2177 lbs for 250 gallons; 4262 lbs for 500 gallons
D. 1018 lbs for 100 gallons; 2269 lbs for 250 gallons; 4262 lbs for 500 gallons
```
92 gal + (100 gal x 8.34 lb/gal)
    = 926 lbs
92 gal + (250 gal x 8.34 lb/gal)
    = 2177 lbs
92 gal + (500 gal x 8.34 lb/gal)
    = 4262 lbs
```

18. Environmental: If the delivery rate (gallons per minute) of a worn or damaged spray tip on a boom sprayer exceeds 10% (higher or lower) of the average for all of the nozzles, then that nozzle's spray tip should be replaced. The following delivery rates (in ounces; oz) were measured during a 20 -second time period. Which if any nozzle spray tips should be replaced?
Tip $1=13.5 \mathrm{oz} ; \quad$ Tip $2=12 \mathrm{oz} ; \quad$ Tip $3=10.5 \mathrm{oz} ; \quad$ Tip $4=12.5 \mathrm{oz} ; \quad$ Tip $5=13 \mathrm{oz} ; \quad$ Tip $6=14 \mathrm{oz}$
A. Replace tips 1 and 4
B. Replace tips 2 and 5
C. Replace tips 3 and 6
D. All tips are within 10%
```
?? oz /20 sec x (1 gal/128 oz) x 60 sec/1 min) = GPM But is not necessary!
Average of oz/20 sec = 13.5+12+10.5+12.5+13+14 = \underline{75.5}=12.5833333 oz/20 sec
    6 6
90% = 0.90 -> 0.90\times12.583333333= 11.325 oz/20 sec lowest allowed
110% = 1.10 }->\mathrm{ 左.10 x 12.583333333 = 13.841666 oz/20 sec highest allowed
```

19. Machinery: A tractor mounted pesticide sprayer has 36 Teejet nozzles uniformly spaced along a spray boom. The applicator prefers to travel at 5 miles per hour (MPH) and wants to apply the pesticide and water mixture at a rate of $\mathbf{2 0}$ gallons per acre (GPA) to provide good coverage of the target site. Which of the following combinations of nozzle tip sizes and nozzle spacing will provide the approximate coverage required given the above parameters? This spray equipment is operated at 40 pounds per square inch (PSI) as recommended by Teejet. The Teejet number coding appears in the box.

$\frac{\text { Gallons Per Minute }}{\text { Nozze }}=\frac{\text { GPA x MPH x Nozzle Spacing in Inches }}{\mathbf{5 9 4 0}}$

A. XR Teejet 8001 VS with 20 inch nozzle spacing
B. XR Teejet 11002 VS with 22 inch nozzle spacing
C. XR Teejet 8004 VS with 24 inch nozzle spacing
D. XR Teejet 11008 VS with 26 inch nozzle spacing

| $\mathrm{GPM}_{\mathrm{C}}=\frac{20 \mathrm{GPA} \times 5 \mathrm{MPH} \times 24^{\prime \prime}}{5940}$ | $\mathrm{GPM}_{\mathrm{C}}=0.404040$ |
| ---: | :--- | ---: | :--- |
| $\mathrm{GPM}_{\mathrm{A}}=0.336700 \quad \mathrm{GPM}_{\mathrm{B}}=0.370370$ | $\mathrm{GPM}_{\mathrm{D}}=0.437710$ |

20. Electrical: The interior electrical lighting of a farm structure is being replaced with high efficiency lighting. The 24 incandescent, 200-Watt lights will be replaced with 24 LED, 50-Watt lights. If the lights are operated 88 hours per month and electricity cost 10 cents per kilowatt-hour (kWh), what is the approximate reduction in electrical power costs each month? 1000 Watts $=1$ kilowatt
A. $\$ 10.56$
$\$$ saving $/ \mathrm{mth}=(200 \mathrm{~W}-50 \mathrm{~W}) \times \$ 0.10 / \mathrm{kwh} \times 88 \mathrm{hrs} / \mathrm{mth} \times 24$ lights $\times 1 \mathrm{kwh} / 1000 \mathrm{~W}=\$ 31.68$
B. $\$ 31.68$
C. $\$ 42.40$
D. $\$ 68.82$
21. Electrical: Three incandescent light bulbs ($\mathbf{1 0 0}$ Watts, $\mathbf{2 0 0}$ Watts, $\mathbf{3 0 0}$ Watts) are operating in a $\mathbf{1 2 0}$ volt circuit. If each bulb operates at its rated wattage, which of the following statements is correct in regard to the operation of the bulbs? Wattage $=$ Voltage \times Amperage

Voltage $=$ Amperage \times Resistance
A. All three bulbs operate at the same amperage.
B. All three bulbs have the same electrical resistance.
$0.833 \mathrm{Amps}=100 \mathrm{Watts} / 120$ volts
$\mathrm{R}=120$ volts $/ 0.833=144$ ohms
C. The 100 -watt light bulb has more electrical resistance (ohms) than the 200 or 300 -Watt light bulbs.
D. The 100 -watt light bulb has less electrical resistance (ohms) than the 200 or 300 -Watt light bulbs.
22. Energy: An electric water heaters uses 880 kilowatt-hours ($\mathbf{k W h}$) of power each day. If electric power cost 11.5 cents per kWh , approximately how much energy (in therms) does this water heater use during 22 days of operation? British Thermal Unit = BTU
$1 \mathrm{kWh}=3412.3$ BTUs of energy $\quad 1$ therm of energy $=100,000$ BTUs of energy
A. 306.0 therms
B. 660.6 therms
$880 \mathrm{kWh} /$ day x 22 days $\times 3412.3$ Btus $/ \mathrm{kWh} \times 1$ therm $/ 100,000$ Btus $=$ 660.62128 therms
C. 933.6 therms
D. 7507.0 therms
23. Structural: A round concrete column is fabricated using $\mathbf{2 . 2 5}$ cubic yards of concrete. If the concrete column is $\mathbf{2}$ feet $\mathbf{4}$ inches in diameter, what is the approximate height of the column?
1 cubic yard $=27$ cubic feet $\quad 1$ cubic foot $=1728$ cubic inches $\quad 1$ foot $=12$ inches Volume of cylinder $=\pi \times$ (cylinder radius $^{2} \times$ cylinder height $\quad \pi=3.14 \quad$ diameter $=(2 \times$ radius $)$
A. 5.4 feet
B. 9.7 feet
C. 11.9 feet
D. 14.2 feet

```
2.25 \mp@subsup{\textrm{yd}}{}{3}=3.14\times(2\mp@subsup{8}{}{\prime\prime}\div2 x 1'/12")}\mp@subsup{)}{}{2}\times\mathrm{ height ft }\times(1\mp@subsup{\textrm{yd}}{}{3}/27\mp@subsup{\textrm{ft}}{}{3}
height = 2.25 yd}\mp@subsup{}{}{3}\div[(3.14\times(1.166667)\mp@subsup{)}{}{2}\times(1\mp@subsup{\textrm{yd}}{}{3}/27\mp@subsup{\textrm{ft}}{}{3})]= 14.2142126'
```

24. Environmental: A large volume of water contaminated with liquid pesticide (water and liquid pesticide) was collected from the runoff of a mixing and loading concrete pad. Initially the liquid is $\mathbf{6 \%}$ pesticide and $\mathbf{9 4 \%}$ water. Over the summer much of the water evaporates and only $\mathbf{4 2 \%}$ of the water remains. All of the pesticide still remains. What is the approximate percentage of pesticide in the remaining liquid?
A. 9.9% pesticide
B. 11.4% pesticide
C. 12.1% pesticide
```
Initially waste water mixture = 0.06 P + 0.94 W = 1.00 (P & W)
After evaporation mixture = (0.06 P + 0.94 W) - (0.58 x 0.94 W)
    = 0.06 P + (0.94 W - 0.5452 W) = 0.06 P + 0.3948 W
% P in P&W = 0.06 P \div (0.06 P + 0.3948 W) = 0.06 P }\div0.4548(P&W
%P}=0.1319261214\times100%/1=13.2
```

25. Machinery: A tractor powered herbicide boom sprayer with 24 spray nozzles, spaced 20 inches apart, is setup and calibrated to spray weeds in forage crops. The sprayer delivers a herbicide and water mixture at a uniform rate of 17.5 gallons per acre, travels at 4.75 miles per hour (MPH), and operates at a spray pressure of 30 pounds per square inch (PSI). An unusually high weed infestation requires an increase in the application of the herbicide mixture to 20 gallons per acre (GPA). Which of the following changes to one of the sprayer's operating parameters will most closely achieve 20
GPA? $\quad \frac{\text { Gallons Per Minute }}{\text { Nozzle }}=\frac{\text { GPA } \times \text { MPH x Nozzle Spacing in Inches }}{5940}$
Pressure Formula: New PSI $=($ Original PSI $) \times(\text { New GPM } \div \text { Original GPM })^{2}$
A. Decrease speed from 4.75 MPH to 4.5 MPH
B. Decrease speed from 4.75 MPH to 4.25 MPH
C. Increase pressure from 30 PSI to 34 PSI
D. Increase pressure from 30 PSI to 39 PSI

Simplest/fastest way is to try each of the four answers. Reviewing answers prior to starting solution might save time because B and D are highest of the two types of answers.
?? Original GPM per Nozzle $=\underline{1} 7.5 \mathrm{GPA} \times 4.75 \mathrm{MPH} \times 20 " \div 5940=\mathbf{0 . 2 7 9 8 8 2 1 5 4 9}$ Original GPM
0.2798821549 GPM $_{\mathrm{A}}$ per Nozzle $=$?? GPA $\times 4.5 \mathrm{MPH} \times 20$ " $\div 5940=\mathbf{1 8 . 4 7 2 2 2} \mathbf{G P A}_{\mathrm{A}}$
0.2798821549 GPM $_{\mathrm{B}}$ per Nozzle $=$?? GPA ${ }_{B} \times 4.25 \mathrm{MPH} \times 20$ " $\div 5940=\mathbf{1 9 . 5 5} \mathbf{G P A}_{\mathrm{B}}$

34 PSI $=30$ PSI $x(\text { New ?? GPM } \div 0.2798821549 \text { GPM })^{2} \quad \rightarrow$ New GPMC $=0.2979573068$ 0.2979573068 GPM $_{C}$ per Nozzle $=$?? GPA $C_{C} \times 4.75 \times 20^{\prime \prime} \div 5940=\mathbf{1 8 . 6 3 0 1 7 2 6 6}$ GPA $_{C}$

39 PSI $=30$ PSI $x(\text { New ?? GPM } \div 0.2798821549 \text { GPM })^{2} \rightarrow$ New GPM ${ }_{C}=0.3191147549$ $0.3191147549 \mathrm{GPM}_{\mathrm{D}}$ per Nozzle $=? ? \mathrm{GPA}_{\mathrm{D}} \times 4.75 \times 20^{\prime \prime} \div 5940=19.95306994$ GPA $_{D}$

STUDENTS DO NOT OPEN THIS TEST OR BEGIN UNTIL INSTRUCTED TO START

 2016 Examination for the

 2016 Examination for the

 National Agricultural Technology and

 National Agricultural Technology and Mechanical Systems Mechanical Systems

 Career Development Event

 Career Development Event}

Name

Print Name Legibly

Answer Key Do Not Distribute

2. Electrical	7. Machinery	12. Environmental	17. Structural	22. Energy
3. Energy	8. Electrical	13. Machinery	18. Environmental	23. Structural
4. Structural	9. Energy	14. Electrical	19. Machinery	24. Environmental
5. Environmental	10. Structural	15. Energy	20. Electrical	25. Machinery

This exam begins on the back of this sheet.

2016 Written Examination for the National Agricultural Technology \& Mechanical Systems Career Development Event

Mark all answers on the Scantron sheet using a pencil. Read each question carefully and mark the single correct answer on the Scantron sheet. Each student needs a calculator to complete this examination, but calculators may not be shared between students. Information written on this exam will not be graded.

1. Machinery: Approximately how many acres are in a rectangular field measuring $\mathbf{1 0 9 4}$ meters by $\mathbf{1 . 2 5}$ miles? $\quad 1$ acre $=43,560$ square feet $\quad 1$ hectare $=2.47$ acres $\quad 1$ acre $=0.4045$ Hectares Area of Rectangle $=$ length \times width $\quad 1$ mile $=5,280$ feet $\quad 1$ foot $=0.3048$ meter
A. 321.6 acres
B. 391.7 acres

$$
1094 \mathrm{~m} \times 1 \mathrm{ft} / 0.3048 \mathrm{~m} \times 1.25 \mathrm{mi} \times 5280 \mathrm{ft} / 1 \mathrm{mi} \times 1 \mathrm{ac} / 43,560 \mathrm{ft}^{2}=543.824067 \mathrm{ac}
$$

C. 463.5 acres
D. 543.8 acres
2. Electrical: A varie ty of incandescent lights are all ope rating on a single $\mathbf{1 2 0}$-volt electrical circuit in a livestock barn. The circuit includes ten $\mathbf{6 0}$-watt lights, eight $\mathbf{1 0 0}$-watt lights, and four $\mathbf{2 0 0}$-watt lights. What is the amperage of the circuit with all of these light operating?
Total Wattage $=$ Voltage \times Amperage
A. 8.6 amps
B. 12.5 amps
C. 15.4 amps
D. 18.3 amps

$$
\begin{aligned}
& \mathrm{W}=\mathrm{V} \times \mathrm{A} \\
& (10 \times 60 \mathrm{Watts})+(8 \times 100 \mathrm{Watts})+(4 \times 200 \text { Watts })=120 \text { volts } \times \mathrm{amps} \\
& \mathrm{amps}=18.333333 \mathrm{amps}
\end{aligned}
$$

3. Energy: A 180 horsepower eight-cylinder engine is operating at 4870 feet above sea level. What approximate horse power can be produced by the engine when the engine's power is reduced 2.25 percent for each 1000 feet of elevation above sea le vel?
A. 133.1 horsepower
B. 147.2 horsepower
```
180 horsepower - [ 180 hp x 4870 ft x (0.0225/1000 ft )] = 160.2726 hp
```

C. 160.3 horsepower
D. 172.4 horsepower
4. Structural: Four solid rectangular steel bars each has cross sectional measurements of 1.5 inches by 3 inches and a combined maximum tensile strength $1,170,000$ pounds. What is the maximum tensile strength of each bar in pounds per square inch ($\mathbf{p s i}$)?
A. $11,700 \mathrm{psi}$
B. $65,000 \mathrm{psi}$
$(1,170,000 \mathrm{lbs} / 4 \mathrm{bars}) \div\left(1.5^{\prime \prime} \times 3^{\prime \prime}\right)=65,000 \mathrm{psi}$
C. $260,000 \mathrm{psi}$
D. $292,500 \mathrm{psi}$
5. Environmental: In order to protect ground water from animal waste contaminants a concre te slab will be poured using forms that have inside dimensions of 34 feet, 9 inches by 23 feet, 3 inches. The forms allow for a concrete slab that is $\mathbf{6}$ inches deep. What is the approximate quantity of concrete that will be needed to pour this slab? 1 cubic yard $=27$ cubic feet 1 gallon $=231$ cubic inches $\quad 1$ cubic-foot $=1728$ cubic-inches Volume of rectangular prism $=$ Length \times Width \times Height
A. $13 \mathrm{yd}^{3}$
B. $15 \mathrm{yd}^{3}$
C. $17 \mathrm{yd}^{3}$

```
? yds }\mp@subsup{}{}{3}=34.75'\times23.25'\times 0.5' x 1 yd '/27 ft f 14.9618
```


D. $19 \mathrm{yd}^{3}$
6. Environmental: If a center pivot irrigation system is 500 meters long (has a 500-meter radius), approximately how many acres can be irrigated under the pivot's boom during 360 degrees of travel?

$$
\begin{array}{lcr}
\text { Area of a circle }=(\pi) \times(\text { radius })^{2} & \pi=3.14 & \text { diameter }=2 \times \text { radius } \\
1 \text { acre }=43,560 \text { square feet } & 1 \text { mile }=5,280 \text { feet } & 1 \text { foot }=0.3048 \text { meter }
\end{array}
$$

A. $\quad 18.0$ acres
B. 111.8 acres


```
Acres \(=3.14 \times(500 \mathrm{mx1ft} / 0.3148 \mathrm{~m})^{2} \times 1 \mathrm{ac} / 43,560 \mathrm{ft}^{2}=181.849595 \mathrm{ac}\)
```

C. 181.8 acres
D. $1,118.6$ acres
7. Machinery: Each cylinder in a six-cylinder tractor engine has a bore (diameter) of 4.62 inches and a piston stroke of 6.1 inches. What is the approximate total displacement of this engine in liters?
Area of a cylinder bore $=(\pi) \times(\text { radius })^{2} \quad \pi=3.14 \quad$ radius $=($ diameter $\div 2)$
Volumetric displacement of a single cylinder $=$ (length of piston stroke) x (the area of the cylinder bore)
1 liter $=61$ cubic inches $\quad 1$ cubic inch $=0.0164$ liter
A. 6 liters
B. 8 liters

$$
6 \mathrm{cyl} \times 3.14 \times(4.62 \mathrm{in} / 2)^{2} \times 6.1 \mathrm{in} \times\left(1 \mathrm{~L} / 61 \mathrm{in}^{3}\right)=10.0532 \mathrm{~L}
$$

C. 10 liters
D. 12 liters
8. Electrical: A water pump for stock tanks has an electrical motor that operates at $\mathbf{1 2 0}$ volts and uses 20 amps of current. If the motor is 87.5 percent efficient and has a 0.89 power factor, what is the approximate horse power of the motor? 1 horsepower $=746$ Watts
horsepower $=\frac{\text { voltage } \mathrm{x} \text { amperage } \times \text { power factor } \mathrm{x} \text { efficiency }}{746}$
A. 2.5 horsepower
B. 7.6 horsepower
C. 9.7 horsepower

$$
? \mathrm{hp}=\frac{120 \mathrm{~V} \times 20 \mathrm{~A} \times 0.89 \times 0.875}{746}=2.5 \mathrm{hp}
$$

D. 11.8 horsepower
9. Energy: An available electronic thermometer is calibrated in degrees Fahrenheit (${ }^{\circ} \mathbf{F}$). A livestock feed decontamination process indicates that a temperature for of 82 degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ is necessary. What is the approximate temperature equivalent in degrees Fahrenheit?
${ }^{\circ} \mathrm{F}=\left(9 / 5{ }^{\circ} \mathrm{C}\right)+32$
${ }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right)$
Water freezes at $32{ }^{\circ} \mathrm{F}$
Water boils at $212{ }^{\circ} \mathrm{F}$
A. $100{ }^{\circ} \mathrm{F}$
B. $140{ }^{\circ} \mathrm{F}$

$$
{ }^{\circ} \mathrm{F}=\left(9 / 5 \times 82{ }^{\circ} \mathrm{C}\right)+32=179.6^{\circ} \mathrm{F}
$$

C. $180{ }^{\circ} \mathrm{F}$
D. $220{ }^{\circ} \mathrm{F}$
10. Structural: Steel angle iron is sold for $\$ 1.79$ per line ar foot, steel rod is sold for 92 cents per line ar foot, and steel pipe is sold for $\$ 2.91$ per line ar foot. If 60 feet of angle iron, 20 feet of rod, and 63 feet of pipe are purchased, and 7% taxes are paid with the purchase, what is the approximate total price for the metal?
A. $\$ 330.77$
B. $\$ 383.66$
C. $\$ 429.55$
D. $\$ 493.44$

```
60' x $ 1.79 / ft = $ 107.40
20' x $ 0.92 / ft = $ 18.40
63' x $ 2.91/ft = $ 183.33 Total = $ 309.13
$ 309.13 x 1.07 tax = $ 330.7691
```

11. Structural: Which of the following quantities of lumber has the greatest number of board-feet?

1 board-foot $=144$ cubic inches $\quad 1$ square foot $=144$ square inches
A. 13 boards measuring 1 inches by 6 inches by 12 feet
B. 11 boards measuring 1 inch by 8 inches by 12 feet
C. 12 boards measuring 2 inches by 4 inches by 10 feet
D. 9 boards measuring 2 inches by 6 inches by 8 feet

Nominal Measurement Comparison (same answer for actual) $13 \times 1^{\prime \prime} \times 6^{\prime \prime} \times 12^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=78 \mathrm{bd}-\mathrm{ft}$ $11 \times 1^{\prime \prime} \times 8^{\prime \prime} \times 12^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=88 \mathrm{bd}-\mathrm{ft}$ $12 \times 2^{\prime \prime} \times 4^{\prime \prime} \times 10^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=80 \underline{\text { bd-ft }}$ $9 \times 2^{\prime \prime} \times 6^{\prime \prime} \times 8^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=72 \mathrm{bd}-\mathrm{ft}$
12. Environmental: If a animal waste storage tank measures 60 feet wide by 33 yards long.

Approximately how deep must the container be to hold 200,500 gallons of liquid?
1 gallon $=0.133681$ cubic feet $\quad 1$ yard $=3$ feet $\quad 1$ cubic foot $=(1$ foot $\times 1$ foot $\times 1$ foot $)$
A. 2.90 feet
B. 3.41 feet
C. 4.92 feet
D. 5.63 feet

```
250,000 gal = 1gal/ 0.133681 ft ' x 60'x 33 yds x 3 ft/yd x depth? feet
Depth ? feet = 250,000 gal x 0.133681/1 gal }\div(60'\times33 yds x 3 ft/yd) 
Depth = 5.6263047 ft
```

13. Machine ry: What is the approximate speed, in miles per hour, for a planter that travels $\mathbf{1 0 0}$ meters in 39.5 seconds? $\quad 5,280 \mathrm{ft}=1$ mile $\quad 3600$ seconds $=1$ hour $\quad 1$ foot $=0.3048$ meter
A. 3.44 miles per hour
B. 4.55 miles per hour
```
mph}=(100\textrm{m}/39.5\textrm{sec})\times(1\textrm{ft}/0.3048 m) x (3600 sec / 1 hr) x (1 mi / 5,280 ft) 
    = 5.66313 mph
```

C. 5.66 miles per hour
D. 6.77 miles per hour
14. Electrical: Three incandescent light bulbs ($\mathbf{1 0 0}$ Watts, $\mathbf{2 0 0}$ Watts, $\mathbf{3 0 0}$ Watts) are operating properly in a $\mathbf{1 2 0}$ volt electrical circuit. If each bulb operates at $\mathbf{1 2 0}$ volts, which of the following statements is correct in regard to the operation of the bulbs?
Information: Wattage $=$ Voltage \times Amperage \quad Voltage $=$ Amperage \times Resistance
A. All three bulbs operate at the same amperage. \square
$0.833 \mathrm{Amps}=100$ Watts $/ 120$ volts $\quad \mathrm{R}=120$ volts $/ 0.833=144 \mathrm{ohms}$
B. All three bulbs have the same electrical resistance.
C. The 100 -watt light bulb has less electrical resistance (ohms) than the 200- or 300-Watt light bulbs.
D. The 100 -watt light bulb has more electrical resistance (ohms) than the 200- or 300 -Watt light bulbs.
15. Energy: This question refers to the sample gas bill for a large dairy shown below. Including the connection fee, taxes, and the gas consumption charge, what is the total amount paid by the dairy ope rator for each cubic-foot of natural gas?
A. $\$ 0.79 \mathrm{perft}^{3}$
B. $\$ 0.86$ per ft^{3}
C. $\$ 24.08$ per ft^{3}
D. $\$ 29.35$ per ft ${ }^{3}$

Sample Natural Gas Monthly Bill: September 29, 2016 to October 27, 2016 (28 days)			
NATURAL GAS CONSUMPTION		SERVICE FEES	Cost
Current Meter Reading (cubic-feet)	1932	Gas Consumption Charge	\$ 301.60
Previous Meter Reading (cubic-feet)	1533	Monthly Connection Fee	\$ 13.50
Meter Difference (cubic-feet)	399	Subtotal	\$ 315.10
Average Consumption (cubic-feet / day	14.25	City/State/Energy Taxes (8.9\%)	\$ 28.04
*Volume Multiplier	0.088894	Current Total Due	\$ 343.14

$1 \mathrm{kWh}=3412.3$ Btus $\quad 1$ therm $=100,000$ Btus (approximate, varies seasonally)
*Volume Multiplier: Converts gas volume (cubic-feet read on meter) to therms of gas consumed (value varies seasonally).
A British thermal unit (Btu) is the heat required to raise the temperature of one pound of water one degree Fahrenheit.
Therm: Unit of measurement used by gas companies to convert the volume of gas to its heat equivalent (actual energy).
16. Energy: A water pump has a 3.5 -inch diameter pulley that must turn at 1000 re volutions per minute (rpm). The shaft of a electric motor rotates at 1725 rpm and powers the belt that turns the pump's pulley. What is the approximate diameter of the pulley needed on the motor shaft to turn the pump at 1000 rpms? Pulley Size Formula: (Diameter of Pulley $1 \times$ Speed of Pulley 1) $=$ (Diameter of Pulley $2 \times$ Speed of Pulley 2)
A. 1.0 inches
B. 1.3 inches
C. 1.7 inches
D. 2.0 inches
17. Structural: A rectangular wooden box is used to ship livestock mine ral blocks. Each mineral block weights 42.5 pounds and measures 10 inches by 10 inches by 14 inches. Only whole blocks are shipped. This wooden box has a maximum carrying capacity of 2,050 pounds. The boards used in the box are 1.5 inches thick and each side, top, and bottom of the box is two boards thick. The external length and width of the box each measurements 48 inches. There are 16 mine ral blocks on each layer within the box. What is an appropriate measurement for the box's external height?

Volume of rectangular prism $=$ Length \times Width \times Height
A. 40 inches
B. 44 inches
C. 48 inches
D. 52 inches

```
2050 lbs/box \div42.5 lbs/block = 48 blocks/box
48" length & width - 6" for wood sides = 42" inside space length & width
4 blocks x 4 blocks per layer = 16 blocks per layer
4\times10"/block=40" to fitinside 42" space
4\times14" on a layer will not work with only 42" of space
48 blocks/ box \div16 blocks/layer = 3 layers
3 layers x 14' perlayer = 42" 42" for blocks + 6" for wood = 48"
```


18. Environmental: Water flows through 109 feet of horizontal pipeline that includes four 90 degree elbows. The water flow rate is $\mathbf{6 . 2 5}$ gallons per minute where the water exits the $\mathbf{1 0 9}$-foot pipeline. The pressure loss through the pipeline is equivalent to 6.4 vertical feet of head (pressure) loss per 100 feet of horizontal run. The head loss through each elbow is equivalent to that of 4.85 feet of additional horizontal length. Approximately, what is the vertical head (pressure) loss for this horizontal pipeline?
A. 8.2 feet of head loss
B. 12.4 feet of head loss

```
head loss = [109 ft +(4 elbows x 4.85 ft / elbow )] x ( 6.4 ft loss/ 100 ft) = 8.2176 ft
```

C. 69.2 feet of head loss
D. 109.0 feet of head loss
19. Machinery: A hydraulic cylinder that operates the arm of a skid steer loader has a bore diameter of 3 inches and a stroke of 36 inches. The tractor's hydraulic system produces a maximum pressure of $\mathbf{2 , 9 0 0}$ pounds per square inch. Approximately, what is the maximum force the cylinder can exert on the lift arm? Area of a cylinder bore $=(\pi) \times$ (radius) $)^{2}$
$\pi=3.14$
Force $=$ Pressure \times Area \quad radius $=($ diameter $\div 2)$
A. 11,099 pounds
B. 14,811 pounds

Force $=$ Pressure \times Area $=2,900 \mathrm{lb} / \mathrm{in}^{2} \times 3.14 \times(3 \mathrm{in} / 2)^{2}=\underline{20,488 \mathrm{lbs}}$
C. 17,644 pounds
D. 20,488 pounds
20. Electrical: The monthly charge to operate an electric pump is $\mathbf{1 2 . 7 5}$ cents per kilowatt hour ($\mathbf{k} \mathbf{w h}$) for the first 1000 hours and 13.9 cents for each k wh greater than 1000 hours. If the pump uses 6.75 kilowatts per hour and it operates 22 days each month for 12 hours each day, what is the approximate monthly k wh charge to operate the pump?
Information: 1 kilowatt $=1000$ Watts $\quad 100$ cents $=\$ 1.00$
A. $\$ 196.30$
B. $\$ 236.20$
$\mathrm{kwh} /$ month $=6.75 \mathrm{kw} \times 22$ days $/ \mathrm{mth} \times 12 \mathrm{hrs} /$ day $=1782 \mathrm{kwh} / \mathrm{mth}$ $\$=(1000 \mathrm{kwh} / \mathrm{mth} \times \$ 0.1275 / \mathrm{kWh})+[(1782 \mathrm{kwh} / \mathrm{mth}-1000 \mathrm{kwh} / \mathrm{mth}) \times \$ 0.139 / \mathrm{kWh}]$ $\mathrm{kwh} / \mathrm{mth}=\$ 236.198$
C. $\$ 274.10$
D. $\$ 314.00$
21. Electrical: An old electrical motor has 'burned' out and must be replaced. The old motor operated an average of 10.5 hours each day, 27 days each month, and its average annual electrical bill was $\mathbf{\$ 1 1 , 8 9 5}$. The replacement cost for motor (identified as \mathbf{A}) that is identical to the old motor sells for $\$ 789$ dollars and the installation charge is $\$ 276$. An energy efficient motor (identified as \mathbf{B}) sells for $\$ 1,092$ and the installation charge is $\$ 314$. Motor B will have an average cost of $\$ 3.39$ per hour to ope rate. Approximately how many months must motor B operate to make up (payback) the higher cost to purchase and install an energy efficient motor rather than motor A? 1 year $=12$ months
Motor Burnout Payback Period $=\underline{(\text { total cost for high efficient equipment B) }-(\text { total cost for identical equipment A) }) ~}$
(average saving in energy cost per month)
A. 10.4 months
B. 11.3 months
C. 12.2 months

$$
\text { Payback }=\frac{(\$ 1,092+\$ 314)-(\$ 789+\$ 276)}{(\$ 11,895 / \mathrm{yr} \times 1 \mathrm{yr} / 12 \mathrm{mths})-(\$ 3.39 . / \mathrm{hr} \times 10.5 \mathrm{hrs} / \text { day } \times 27 \text { days } / \mathrm{mths})}=11.297 \mathrm{mths}
$$

D. 13.1 months
22. Energy: This question refers to the sample natural gas bill for the dairy that is printed at the bottom of page 4 (accompanying Question 15) on this exam. Based on the values show on the sample bill, what is the approximate charge per therm for natural gas (excluding connection fee and taxes)?
A. $\$ 5.84$ per therm
B. $\$ 6.79$ per therm
C. $\$ 7.63$ per therm
D. $\$ 8.50$ per therm
23. Structural: A round concrete column (cylinder) is fabricated using 1.5 cubic yards of concrete. If the concrete column is $\mathbf{1 5}$ feet $\mathbf{6}$ inches in height, what is the approximate diame ter of the column? 1 cubic yard $=27$ cubic feet $\quad 1$ cubic foot $=1728$ cubic inches $\quad 1$ foot $=12$ inches Volume of cylinder $=\pi \times(\text { cylinder radius })^{2} \times$ cylinder height $\quad \pi=3.14 \quad$ diameter $=(2 \times$ radius $)$
A. 21.9 inches
B. 27.8 inches
C. 28.4 inches
D. 29.7 inches

```
1.5 yd}\mp@subsup{}{}{3}=3.14\times(\mathrm{ diameter }\div2\textrm{x 1'/12")}\mp@subsup{)}{}{2}\textrm{x}15.5'\textrm{F
diameter = ( }\sqrt{}{1.5\mp@subsup{\textrm{yd}}{}{3}\times27\mp@subsup{\textrm{ft}}{}{3}/1\mp@subsup{\textrm{yd}}{}{3}\div(3.14\times15.5')}\quad\textrm{x 2 x 12"/1'
diameter = 21.89314131"
```

24. Environmental: When a large quantity of manure was initially stored on a concrete slab it was 27 percent solids and 73 percent moisture by weight. In the spring the unprotected manure's moisture content increased to 90 percent due to melting snow. The weep walls around the manure storage slab allowed 19 percent of the manure's moisture (19% of 90%) to be drained off prior to a field application. What approximate percentages of solids remain at the time of application?
$1.00=100 \%$
A. 12.1% solids
B. 13.2% solids
C. 14.3% solids

Manure Content at time of application:
$\mathrm{MC}=[(1.00-0.19$ Moisture Remaining) x 0.90 Moisture $]+0.10$ Solids $=0.829$
\% Solids at time of application:
Solids $=0.10 / 0.829=0.12062726=\underline{12.1 \%}$
D. 15.4% solids
25. Machinery: Refer to the information in Question 24 above. Assume a manure spreader will is used for a field application of the manure (solids and liquids) described in Question 24. The manure spreader will hold a maximum of 4800 gallons of the manure and the manure (liquid and solids) will have an ave rage weight of 8.43 pounds per gallon. Approximately how many pounds of solids are applied with each of the spreader's full loads?
A. 4,896 pounds
B. 5,341 pounds

```
% Solids = 12.1% from question 24
lbs = 4800 gal/spreaderapplication x 8.43 lbs/gal x 12.1% = 4896.144 lbs
```

C. 5,786 pounds
D. 6,231 pounds

STUDENTS DO NOT OPEN THIS TEST OR BEGIN UNTIL INSTRUCTED TO START

2017 Examination for the
 National Agricultural Technology and Mechanical Systems
 Career Development Event

Answer Key Do Not Distribute

- If a diagram, picture, or table is needed to answer a question, the question will refer to the appropriate figure/page.
- Read each question carefully and determine the single correct answer.
- If a mark on the scan sheet needs to be changed, completely erase the incorrect answer and clearly mark the appropriate answer on the answer sheet.
- Each student needs a calculator to complete this examination, but calculators may not be shared between students.
- Formulas and conversion values are provided. Do not round off intermediate answers when using the calculator to solve these problems.

Students are NOT allowed to use any type of electronic communication device, including but not limited to cellular telephones, pagers, two way radios, or PDAs, during the CDE on Wednesday or Thursday. If a student uses, handles, or accesses any type of electronic communication device, she or he may be disqualified. If a personal emergency should arise during the CDE, students should contact a CDE official immediately for assistance.

Order, Point Assignment, and Competency Alignment* for Exam Questions (2 points each)

1. Machinery 1.16, 6.1, 6.4-7	6. Environmental $4.17,4.18,4.19,6.1,6.4-7$	11. Structural $5.1,5.2,5.3,5.22,6.1,6.4-7$	16. Compact Equipment 3.1, 3.4. 3.15, 3.21, 6.1, 6.4-7	21. Electrical 2.4. 2.6, 2.7, 2.10, 6.1, 6.4-7
2. Electrical ${ }^{\text {2.4, 6.1, 6.4-7 }}$	7. Machinery 1.14, 1.16, 1.17, 6.1, 6.4-7	12. Environmental $4.2,4.11,6.1,6.4-7$	17. Structural $5.1,5.2,5.3,5.4,6.1,6.4-7$	22. Compact Equipment $3.1,3.15,3.21,6.1,6.4-7$
3. Compact Equipment 3.1, 3.4, 6.1, 6.4-7	8. Electrical ${ }_{\text {2.4, 2.10, 6.1, 6.4-7 }}$	13. Machinery $1.16,1.17,6.1,6.4-7$	18. Environmental $4.15,4.18,6.1,6.4-7$	23. Structural $5.1,5.3,5.6,6.1,6.4-7$
4. Structural $5.2,5.22,6.1,6.4-7$	9. Compact Equipment 6.1, 6.4-7	14. Electrical $\begin{aligned} & \text { 2.4, 2.11, 6.1, 6.4-7 }\end{aligned}$	19. Machinery ${ }_{\text {1.17, 3.5, 6.1, 6.4-7 }}$	24. Environmental 1.16, 4.2, 4.4, 4.5, 4.14, 4.18, 6.1, 6.4-7
5. Environmental 4.2, 4.4, 4.14, 6.4-7	10. Structural $5.2,6.1,6.4-7$	15. Compact Equipment $3.15,6.1,6.4-7$	20. Electrical $\quad 2.1,2.11,6.1,6.4-7$	25. Machinery $1.15,1.16,1.17,6.1,6.4-7$

This exam begins on the back of this sheet.

2017 Written Examination for the National Agricultural Technology \& Mechanical Systems Career Development Event

Mark all answers on the scan sheet using a pencil. Read each question carefully and mark the single correct answer on the scan sheet. Each student needs a calculator to complete this examination, but calculators may not be shared between students. Information written on this exam will not be graded.

1. Machinery: Approximately how many acres are in a rectangular field measuring $\mathbf{1 9 4 0}$ meters by $\mathbf{0 . 7 5}$ miles? $\quad 1$ acre $=43,560$ square feet $\quad 1$ hectare $=2.47$ acres $\quad 1$ acre $=0.4045$ Hectares Area of Rectangle $=$ length x width $\quad 1$ mile $=5,280$ feet $\quad 1$ foot $=0.3048$ meter
A. 491.6 acres
B. 578.6 acres
C. 613.5 acres
$1940 \mathrm{~m} \times 1 \mathrm{ft} / 0.3048 \mathrm{~m} \times 0.75 \mathrm{mi} \times 5280 \mathrm{ft} / 1 \mathrm{mi} \times 1 \mathrm{ac} / 43,560 \mathrm{ft}^{2}=578.621 \mathrm{ac}$
D. 683.5 acres
2. Electrical: A variety of incandescent lights are all operating on a single 120 -volt electrical circuit in a livestock barn. The circuit includes four 100 -watt lights, five 150 -watt lights, and six 60 -watt lights. What is the amperage of the circuit with all of these lights operating?

Total Wattage $=$ Voltage x Amperage
A. 10.5 amps
B. 12.6 amps
C. 14.7 amps
D. 16.8 amps

```
\(\mathrm{W}=\mathrm{V} \mathrm{x}\) A
\((4 \times 100\) Watts \()+(5 \times 150\) Watts \()+(6 \times 60\) Watts \()=120\) volts \(\times \mathrm{amps}\)
\(\mathrm{amps}=12.5833333 \mathrm{amps}\)
```

3. Compact Equipment: A $\mathbf{2 5}$ horsepower single-cylinder engine is operating at $\mathbf{3 , 4 8 0}$ feet above sea level. What approximate horsepower can be produced by the engine if the engine's power is reduced 1.5 percent for each 1000 feet of elevation above sea level?
A. 23.1 horsepower
B. 23.7 horsepower
```
25 horsepower - [ 25 hp x 3480 ft x (0.015/1000 ft)] = 23.695 hp
```

C. 24.3 horsepower
D. 24.9 horsepower
4. Structural: Steel angle iron is sold for $\$ 1.46$ per linear foot, steel rod is sold for $\mathbf{9 4}$ cents per linear foot, and steel pipe is sold for $\$ \mathbf{2 . 7 6}$ per linear foot. If $\mathbf{3 5 . 5}$ feet of angle iron, $\mathbf{1 2}$ feet of rod, and 100 inches of pipe are purchased, and 7% taxes are paid with the purchase, what is the approximate total price for the metal?
A. $\$ 78.14$
B. \$ 86.11
C. \$ 92.14
D. $\$ 100.11$

```
35.5' x $ 1.46/ft = $ 51.83
12' x $ 0.94 / ft = $ 11.28
100" x 1 ft / 12" x $ 2.76/ft = $ 23 Total = $ 86.11
$ 86.11 x 1.07 tax = $ 92.1377
```

5. Environmental: Refer to the enlarged view of contour lines (in feet) on the topographic map at the right of the page. What is the elevation change between the lines identified by the tips of the two arrows?
A. 120 feet
B. 240 feet
C. 360 feet
D. 480 feet

There are 20 spaces (equal changes in elevation) between 8800 feet and 9600 feet. $\left(9600^{\prime}-8800^{\prime}\right) \div 20=40 \mathrm{ft}$ Each space between lines represents 40^{\prime} of elevation change. There are six spaces between arrows so: $6 \times 40^{\prime}=240^{\prime}$ in elevation change.

6. Environmental: A 10 horsepower pump is required to produce the desired flow rate for water. The new piping/plumbing system that will be used will reduce the efficiency of a pump 12 percent. If the manufacturer of the pump being purchased recommends a 10 percent oversizing of horsepower to compensate for pump inefficiency, what approximate size water pump should be purchased for this situation? $\quad 1.00=100 \%$
A. 7.5 horsepower
B. 10.0 horsepower

```
Pump HP = 10 hp x 1.12 x 1.10 = 12.32 hp
```

C. 12.5 horsepower
D. 13.0 horsepower
7. Machinery: A portable irrigation pump has a 5.5 -inch diameter pulley that must turn at approximately 400 revolutions per minute (rpm). The shaft of the tractor's PTO that powers the pump rotates at 540 rpm and rotates the pump using a belt and two-pulley system. What is the approximate diameter of the pulley needed on the PTO shaft to turn the pulley on the pump at 400 rpms? Pulley Size Formula: (Diameter of Pulley $1 \times$ Speed of Pulley 1) $=$ (Diameter of Pulley $2 \times$ Speed of Pulley 2)
A. 3.0 inches
B. 3.5 inches
C. 4.0 inches

$$
(5.5 \text { in } \times 400 \mathrm{rpms})=(? ? \text { in } \times 540 \mathrm{rpms}) \rightarrow \rightarrow \text { diameter }=4.074^{\prime \prime}
$$

D. 4.5 inches
8. Electrical: A water pump for stock tanks has an electrical motor that operates at 120 volts and uses 13.8 amps of current. If it is a $\mathbf{1 . 5}$ horsepower motor and it operates with a power factor of $\mathbf{0 . 9 2}$, what is the approximate efficiency of the motor? 1 horsepower $=746$ Watts
horsepower $=\frac{\text { voltage } \mathrm{x} \text { amperage } \mathrm{x} \text { power factor } \mathrm{x} \text { efficiency }}{746}$
A. 2.5%
B. 64.3%
C. 73.4%

$$
\begin{aligned}
1.5 \mathrm{hp}=\frac{120 \mathrm{~V} \mathrm{x} 13.8 \mathrm{~A} \mathrm{x} 0.92 \times \text { Efficiency }}{746} \ggg> & \text { Eff. }
\end{aligned}=0.7344833 \mathrm{Eff.}=73.4 \% \mathrm{l}
$$

D. 81.5%
9. Compact Equipment: Which of the following will have the greatest weight in pounds: 4.6 gallons of gasoline, 4.1 gallons of diesel, 3.8 gallons of $15 \mathrm{~W}-40$ engine oil, or 3.9 gallons of automatic transmission fluid?

> 1 gallon of gasoline $=6.3$ pounds
> 1 gallon $15 \mathrm{~W}-40$ engine oil $=7.3$ pounds

1 gallon of diesel $=6.943$ pounds
1 gallon automatic transmission fluid $=7.298$ pounds
A. 4.6 gallons of gasoline
B. 4.1 gallons of diesel
C. 3.8 gallons of $15 \mathrm{~W}-40$ engine oil
D. 3.9 gallons of automatic transmission fluid

4.6 gals gas $\times 6.3 \mathrm{lbs} / 1 \mathrm{gal}$	$=28.98 \mathrm{lbs}$
4.1 gals diesel $\times 6.943 \mathrm{lbs} / 1 \mathrm{gal}$	$=28.4663 \mathrm{lbs}$
3.8 gals oil $\times 7.3 \mathrm{lbs} / 1 \mathrm{gal}$	$=27.74 \mathrm{lbs}$
3.9 gals fluid $\times 7.298 \mathrm{lbs} / 1 \mathrm{gal}$	$=28.4622 \mathrm{lbs}$

10. Structural: Which of the following quantities of lumber has the least number of board-feet?

1 board-foot $=144$ cubic inches
1 square foot $=144$ square inches
A. 10 boards measuring 1 inches by 10 inches by 10 feet
B. 10 boards measuring 1 inch by 8 inches by 12 feet
C. 7 boards measuring 2 inches by 6 inches by 12 feet
D. 5 boards measuring 2 inches by 10 inches by 10 feet

[^0]11. Structural: Four solid round steel rods are 12 feet long and each have a diameter of 2.5 inches. If the rods have a cross sectional tensile strength of $\mathbf{7 0 , 0 0 0}$ pounds per square inch, what is the combined maximum tensile strength (approximate value in pounds) for all four rods?
Area of a circle $=(\pi) \mathrm{X}(\text { radius })^{2}$
$\pi=3.14$
radius $=($ diameter $\div 2)$
A. $1,131,250$ pounds
B. $1,265,500$ pounds
C. $1,373,750$ pounds
$4 \times 3.14 \times(2.5 " / 2)^{2} \times 70,000 \mathrm{psi}=1,373,750 \mathrm{lbs}$
D. $1,492,000$ pounds
12. Environmental: The Universal Soil Loss Equation is composed of six factors to predict the longterm average annual soil loss and one of those values is slope of the land area expressed as a percentage. What is the approximate slope (percentage) of the land that changes elevation from 1875 feet to $\mathbf{1 3 8 4}$ feet over a distance of $\mathbf{1 . 2 4}$ miles?

Slope $=$ Rise \div Run $x(100 \% / 1)$
A. 4.5%
B. 5.5%
C. 6.5%

Slope $=\left(1875^{\prime}-1384^{\prime}\right) \div(1.24$ miles $\times 5,280 \mathrm{ft} . / \mathrm{mi}.) \times 100 \% / 1$
Slope $=7.499389 \%$
D. 7.5%
13. Machinery: What is the approximate speed, in miles per hour, for a fertilizer spreader that travels 110 meters in 1 minute and 6.5 seconds?
$5,280 \mathrm{ft}=1 \mathrm{mile}$
60 seconds $=1$ minute
60 minutes $=1$ hour $\quad 1$ foot $=0.3048$ meter
A. 3.7 miles per hour
$(110 \mathrm{~m} / 66.5 \mathrm{sec}) \times(1 \mathrm{ft} / 0.3048 \mathrm{~m}) \times(60 \mathrm{sec} . / \mathrm{min} . \mathrm{x} 60 \mathrm{~min} . / 1 \mathrm{hr}) \mathrm{x}(1 \mathrm{mi} / 5,280 \mathrm{ft})$ Speed $=3.7002 \mathrm{mph}$
B. 4.2 miles per hour
C. 4.7 miles per hour
D. 5.2 miles per hour
14. Electrical: A 240-volt air conditioning unit uses $\mathbf{6 3}$ kilowatt hours of power during $\mathbf{2 4}$ hours of operation. What is the approximate size of this air conditioning unit in tons of refrigeration (disregard efficiency)? One ton of air conditioning removes heat at the rate equivalent to melting one ton of ice during a period of 24 hours.

$$
\begin{array}{ll}
\text { Information: } & \text { British Thermal Unit }(\mathrm{BTU}): 3412.14 \text { BTUs }=1 \text { kilowatt hour } \\
& 1 \text { Ton of Refrigeration }=12,000 \text { BTUs } / \text { hour (the rate of heat removal) }
\end{array}
$$

A. Three-Quarter Ton
B. One Ton
C. One and One-Half Tons
D. Two Tons

$$
\begin{gathered}
\text { Ton }_{\text {Refrigeration }}=\frac{3412.14 \text { BTUs }}{1 \mathrm{kwh}} \times \frac{\text { Ton }}{12,000 \mathrm{BTUs} / \mathrm{hr}} \times \frac{63 \mathrm{kwh}}{24 \mathrm{hrs}} \\
\gg=0.746 \text { or } 3 / 4 \text { Ton Refrigeration }^{\gg}
\end{gathered}
$$

15. Compact Equipment: An engine manual requires each head bolt to be torqued to 13 Newton meters (Nm) during reassembly. The torques wrench available is calibrated in foot pounds (ft . lbs .). What approximate torque in ft. Ibs. is equivalent to $13 \mathbf{N m}$?

$$
\begin{aligned}
& \text { 4.44822 Newtons }=1 \text { pound force } \quad 0.22481 \text { pound force }=1 \text { Newton } \\
& 1 \text { meter }=3.28084 \text { feet }
\end{aligned} 1 \text { foot }=0.3048 \text { meters } \quad l
$$

A. $6.3 \mathrm{ft} . \mathrm{lbs}$.
B. 7.4 ft . lbs.
C. $8.5 \mathrm{ft} . \mathrm{lbs}$.
D. $9.6 \mathrm{ft} . \mathrm{lbs}$.

```
13 Nm x 0.22481 lbs/1 N x 3.28084 ft/1 m = 9.58835 ft. lbs.
Or
13 Nm x 1 lbs / 4.44822 N x 1 ft/0.3048 m = 9.58831 ft. lbs.
```

16. Compact Equipment: A gasoline mower's power takeoff (PTO) produces 18 horsepower and turns at 540 revolutions per minute. Approximately how much torque, in foot-pounds, can this PTO produce? Torque in foot-pounds $=\frac{\text { PTO Horsepower } \times 5252}{\text { Revolutions } / \text { Minute }}$
A. 142.4 foot-pounds
B. 153.3 foot-pounds
C. 164.2 foot-pounds
```
18 hp x 5252 \div540 rpms = 175.06667 ft-lbs
```

D. 175.1 foot-pounds
17. Structural: Concrete is poured inside a vertical pipe to provide rigidity to the pipe. If 0.75 cubic yards of concrete are needed to fill the pipe that is 10 feet 9 inches tall, what is the approximate inside diameter of the pipe in inches?
1 cubic yard $=27$ cubic feet $\quad 1$ cubic foot $=1728$ cubic inches $\quad 1$ foot $=12$ inches Volume of cylinder $=\pi \times$ (cylinder radius $^{2} \times$ cylinder height $\quad \pi=3.14 \quad$ diameter $=(2 \times$ radius $)$
A. 18.6 inches
B. 19.9 inches
C. 20.2 inches
D. 21.5 inches

```
0.75 \mp@subsup{yd}{}{3}=3.14 x (diameter }\div2\times\mp@subsup{x}{}{\prime}/1\mp@subsup{2}{}{\prime\prime}\mp@subsup{)}{}{2}\times10.75' x (1 yd 3 / 27 ft ) ,
diameter =( }\sqrt{0.75\mp@subsup{\textrm{yd}}{}{3}\times27\mp@subsup{\textrm{ft}}{}{3}/1\mp@subsup{\textrm{yd}}{}{3}\div3.14\div10.75'}{\prime})\times2\times12"/1
diameter = 18.588943"
```

18. Environmental: Water flows through 97.5 feet of horizontal pipeline that includes three 90 degree elbows. The water flow rate is 5.5 gallons per minute (GPM) where the water exits the 97.5 -foot pipeline. The pressure loss through the pipeline is equivalent to 6.6 vertical feet of head (pressure) loss per 100 feet of horizontal run. The head loss through each elbow is equivalent to that of 4.9 feet of additional horizontal length and there are no water leaks. Approximately, what is the water flow rate at the source and what is the equivalent vertical head (pressure) loss for this horizontal pipeline?
A. 6.5 GPM and 4.2 feet of head loss
B. 6.5 GPM and 6.3 feet of head loss
C. 5.5 GPM and 7.4 feet of head loss
D. 5.5 GPM and 8.5 feet of head loss
loss $=[97.5 \mathrm{ft}+(3 \mathrm{els} . \mathrm{x} 4.9 \mathrm{ft} / \mathrm{el})] .\mathrm{x}(6.6 \mathrm{ft} \operatorname{loss} / 100 \mathrm{ft})=7.4052 \mathrm{ft}$
Flow rate at source $=$ flow rate at end
19. Machinery: Each of two hydraulic cylinders raise and lower the arms that operate the bucket on a skid steer loader. Each cylinder has a bore diameter of $\mathbf{2 . 7 5}$ inches and a stroke of $\mathbf{3 4 . 5}$ inches. The tractor's hydraulic system produces a maximum pressure of $\mathbf{3 , 2 0 0}$ pounds per square inch. Approximately, what is the maximum combined force that these two cylinders can exert on the lift arms? Area of a cylinder bore $=(\pi) \times(\text { radius })^{2}$

$$
\begin{aligned}
\pi & =3.14 \\
\text { radius } & =(\text { diameter } \div 2)
\end{aligned}
$$

A. 19,334 pounds
B. 25,884 pounds

C. 31,664 pounds
D. 37,994 pounds
20. Electrical: A farm building that is poorly insulated is located in a zone of the U.S. that typically requires 50 BTUs per square-foot of floor area to adequately heat the interior. If the interior dimension of the rectangular building is $\mathbf{2 6 . 7 5}$ feet by $\mathbf{1 3}$ yards and the model of furnace being purchased is $\mathbf{8 7 \%}$ efficient, what approximate size furnace is required? Information: Furnace output is rated in British Thermal Units (BTUs)
1 yard $=3$ feet \quad Furnace Size in BTUs $=\underline{\text { Number of square feet } x \text { Number of BTUs per square foot }}$ Furnace Efficiency
A. 60,000 BTUs
B. 70,000 BTUs
C. 80,000 BTUs

```
Furnace Size = 26.75' x 13 yds x 3'/1 yd x 50 BTUs /sq ft = 59,956.897 BTUs
```

D. 90,000 BTUs
21. Electrical: Refer to the nameplate shown at the right of the page for an electric motor. Which of the following describes the characteristics of: (1) this motor when it is correctly operating at full load amperage (FLA) on 230 volts and (2) the maximum safe amperage when the $\mathbf{2 3 0}$-volt motor is slightly overloaded and must operate at an amperage higher than full load amperage?
A. 15 FLA and cannot be safety operated over 15 amps
B. 7.5 FLA and cannot be safety operated over 7.5 amps
C. 15 FLA and safely up to 18.75 amps when overloaded
D. 7.5 FLA and safely up to 9.375 amps when overloaded

EIECTRIC NOTOR NAMFPLATE						
MODEL 500		SPLIT PHASE		TOTALLY ENCLOSED		
FRAME		TYPE	INS. CLASS	IDENTIFICATIONNO.		
145		KC	J	2538094990298209		
HP	RPM		OLTS	A.MPS	CYC	S.F.
1\%	1725		5/230	157.5	60	1.25
DESIGN CODE: B				PHASE	EFF	pf.
DRIVE END BEARING BBD 116				1	62\%	75\%
OPP. END BEARING BOB 117				duty: CONTINUOUS		
AMBB 40 C N						
From Nameplate: At 230 volts (connected for high voltge operation) The motor has a FLA of 7.5 amps . The Service Factor (SF) allows $1.25 \times 7.5 \mathrm{amps}=9.375 \mathrm{amps}$						

22. Compact Equipment: Each cylinder in a four-cylinder tractor engine has a bore (diameter) of $\mathbf{2 . 8 5}$ inches and a piston stroke of 4.25 inches. What is the approximate total displacement of this engine in liters? Area of a cylinder bore $=(\pi) \mathrm{X}$ (radius) $)^{2} \quad \pi=3.14 \quad$ radius $=($ diameter $\div 2)$ Volumetric displacement of a single cylinder $=$ (length of piston stroke) x (the area of the cylinder bore)
A. 1.2 liters
1 liter $=61$ cubic inches
1 cubic inch $=0.0164$ liter
B. 1.8 liters
C. 2.5 liters
$4 \mathrm{cyl} \times 3.14 \times(2.85 \mathrm{in} / 2)^{2} \times 4.25 \mathrm{in} \times\left(1 \mathrm{~L} / 61 \mathrm{in}^{3}\right)=1.77696 \mathrm{~L}$
D. 2.9 liters
23. Structural: Intake and/or exhaust fans should have the capacity in cubic feet per minute to adequate exchange the air in a greenhouse every three minutes. The rectangular floor of a greenhouse measures 40 feet by 80 feet and the walls and roof are made of plastic sheeting stretched over plastic pipe hoops positioned as half circles. The hoops give the greenhouse a perfect half cylinder shape with each hoop having a diameter of 40 feet. In cubic feet per minute, what is the approximate size fan needed to ventilate the greenhouse?

$$
\text { Volume of a cylinder }=(\pi) \times \text { (radius })^{2} \times \text { length }
$$

A. 16,750 cubic feet per minute
B. 17,250 cubic feet per minute
C. 17,750 cubic feet per minute
D. 18,250 cubic feet per minute

```
CFM = 1/3 < 1/2[3.14 < (40'\div2)2 }\times8\mp@subsup{0}{}{\prime}
CFM = 16,746.66667 ft 3}/\textrm{min}
```


End view of greenhouse.
24. Environmental: A field has a legal land area of $\mathbf{1 0 0}$ acres with horizontal measurements being 800 feet by $\mathbf{5 , 4 4 5}$ feet. The $\mathbf{8 0 0}$-foot dimension is flat (horizontal), but the longer dimension has a gradual elevation change from 2006 feet to 2998 feet. Although the legal land area is $\mathbf{1 0 0}$ acres, the sloped surface area must be used when calculation fertilizer, pesticide, and seeding applications. What is the approximate area, in acres, for the sloped surface of the field?

Calculating length of side for right triangle uses the Pythgorean Theorem: $a^{2}+b^{2}=c^{2}$ Area of rectangle $=$ Length x Width $\quad 1$ acre $=43,560$ square feet
A. 100.54 acres
B. 101.65 acres
C. 102.76 acres
D. 103.87 acres

$$
\begin{aligned}
& \text { Sloped Area of Land: } \\
& =800^{\prime} \times \sqrt{\left[\left(2,998^{\prime}-2,006^{\prime}\right)^{2}+\left(5,445^{\prime}\right)^{2}\right]} \times 1 \mathrm{ac} / 43,560 \mathrm{ft}^{2} \\
& =101.6460306 \text { acres }
\end{aligned}
$$

25. Machinery: A utility tractor is re-equipped with high profile tires (larger diameter than the factory equipped tires). If the original tires had a 38.5 -inch outside diameter and the new larger tires have a 44.8 -inch outside diameter, what is the approximate speed of the tractor (miles per hour, with larger diameter tires) when the tractor's mechanical speedometer displays 15 miles per hour? Assume all tires are properly inflated, tires have no slippage, and the speedometer is still calibrated for the smaller diameter tires. Circumference of a circle $=(2) \times(\pi) \times$ (radius) $\quad \pi=3.14 \quad$ diameter of circle $=(2) \mathrm{x}$ (radius)
A. 16.0 mph
B. 16.5 mph
C. 17.0 mph
D. 17.5 mph

STUDENTS DO NOT OPEN THIS TEST OR BEGIN UNTIL INSTRUCTED TO START

2018 Examination for the

National Agricultural Technology and Mechanical Systems
Career Development Event

Answer Key Do Not Distribute

- If a diagram, picture, or table is needed to answer a question, the question will refer to the appropriate figure/page.
- Read each question carefully and determine the single correct answer.
- If a mark on the scan sheet needs to be changed, completely erase the incorrect answer and clearly mark the appropriate answer on the answer sheet.
- Each student needs a calculator to complete this examination, but calculators may not be shared between students.
- Formulas and conversion values are provided. Do not round off intermediate answers when using the calculator to solve these problems.

Students are NOT allowed to use any type of electronic communication device, including but not limited to cellular telephones, pagers, two way radios, or PDAs, during the CDE on Wednesday or Thursday. If a student uses, handles, or accesses any type of electronic communication device, she or he may be disqualified. If a personal emergency should arise during the CDE, students should contact a CDE official immediately for assistance.

Order, Point Assignment, and Competency Alignment* for Exam Questions (2 points each)

1. Machinery	6. Environmental	11. Structural	16. Compact Equipment	21. Electrical
2. Electrical	7. Machinery	12. Environmental	17. Structural	22. Compact Equipment
3. Compact Equipment	8. Electrical	13. Machinery	18. Environmental	23. Structural
4. Structural	9. Compact Equipment	14. Electrical	19. Machinery	24. Environmental
5. Environmental	10. Structural	15. Compact Equipment	20. Electrical	25. Machinery

This exam begins on the back of this sheet.

2018 Written Examination for the National Agricultural Technology \& Mechanical Systems Career Development Event

Mark all answers on the scan sheet using a pencil. Read each question carefully and mark the single correct answer on the scan sheet. Each student needs a calculator to complete this examination, but calculators may not be shared between students. Information written on this exam will not be graded.

1. Machinery: Approximately how many acres are in a rectangular field measuring 2147 yards by 984 meters? $\quad 1$ acre $=43,560$ square feet $\quad 1$ hectare $=2.47$ acres $\quad 1$ acre $=0.4045$ Hectares

Area of Rectangle $=$ length \times width $\quad 1$ mile $=5,280$ feet $\quad 1$ foot $=0.3048$ meter
A. 477.4 acres
B. 498.4 acres
C. 523.6 acres
$984 \mathrm{~m} \times 1 \mathrm{ft} / 0.3048 \mathrm{~m} \times 2147 \mathrm{yds} \times 3 \mathrm{ft} / 1 \mathrm{yd} \times 1 \mathrm{ac} / 43,560 \mathrm{ft}^{2}=477.3595 \mathrm{ac}$
2. Electrical: A variety of incandescent lights are all operating on a single 120 -volt electrical circuit in a livestock barn. The circuit includes six 150-watt lights, two 300-watt lights, and twelve 40-watt lights. What is the amperage of the circuit with all of these lights operating?

Total Wattage $=$ Voltage \times Amperage
A. 13.2 amps
B. 14.5 amps
C. 15.2 amps
D. 16.5 amps

$$
\begin{aligned}
& \mathrm{W}=\mathrm{V} \times \mathrm{A} \\
& (6 \times 150 \text { Watts })+(2 \times 300 \text { Watts })+(12 \times 40 \text { Watts })=120 \text { volts } \times \mathrm{amps} \\
& \mathrm{amps}=16.5 \mathrm{amps}
\end{aligned}
$$

3. Compact Equipment: A $\mathbf{1 2}$ horsepower single-cylinder engine is operating at $\mathbf{5 , 1 5 0}$ feet above sea level. What approximate horsepower can be produced by this engine if the engine's power is reduced 1.75 percent for each 1000 feet of elevation above sea level?
A. 10.4 horsepower
B. 10.9 horsepower
```
12 horsepower - [ 12 hp x 5,150 ft x (0.0175/1000 ft )] = 10.9185 hp
```

C. 11.4 horsepower
D. 11.9 horsepower
4. Structural: Steel angle iron is sold for $\mathbf{\$ 1 . 7 9}$ per linear foot, steel tubing is sold for $\mathbf{\$ 2 . 1 1}$ per linear foot, and rebar is sold for $\mathbf{3 8}$ cents per linear foot. If $\mathbf{1 1 2}$ feet of angle iron, $\mathbf{9 5}$ feet of tubing, and twelve 20 -foot lengths of rebar are purchased, and $\mathbf{6 . 6 7 \%}$ taxes are paid with the purchase, what is the approximate total price for the metal?
A. $\$ 474.96$
B. $\$ 493.96$
C. \$ 524.96
D. $\$ 543.96$

```
112' x $ 1.79 / ft = $ 200.48
95' x $ 2.11/ft = $ 200.45
12 x 20' x $ 0.38/ft = $91.20 Total = $492.13
$ 492.13 x 1.0667 tax = $ 524.955071
```

5. Environmental: Water flows through $\mathbf{1 1 9}$ feet of pipeline that includes five $\mathbf{9 0}$ degree elbows. The water flow rate is 5.25 gallons per minute where the water exits the 119 -foot pipeline. The pressure loss through the pipeline is equivalent to 6.5 vertical feet of head (pressure) loss per 100 feet of horizontal run. The head loss through each elbow is equivalent to that of $\mathbf{4 . 2 5}$ feet of additional horizontal length. What is the approximate vertical head (pressure) loss for this horizontal pipeline?
A. 29 feet of head loss
B. 35 feet of head loss
loss $=(5$ elbows $\times 4.25 \mathrm{ft} /$ elbow $)+119 \mathrm{ft} \times(6.5 \mathrm{ft}$ loss $/ 100 \mathrm{ft})=\underline{28.985 \mathrm{ft}}$
C. 41 feet of head loss
D. 46 feet of head loss
6. Environmental: If a center pivot irrigation system is 0.5 mile long (has a 0.5 mile radius), approximately how many acres can be irrigated under the pivot's boom during 360 degrees of travel? Information: Area of a circle $=(\pi) \times(\text { radius })^{2} \quad \pi=3.14 \quad$ diameter $=2 \times$ radius 1 acre $=43,560$ square feet $\quad 1$ mile $=5,280$ feet
A. 404.8 acres
B. 433.4 acres

$$
\text { Acres }=3.14 \times(0.5 \mathrm{mi} \times 5280 \mathrm{ft} / \mathrm{mi})^{2} \times 1 \mathrm{ac} / 43,560 \mathrm{ft}^{2}=502.4 \mathrm{ac}
$$

C. 488.8 acres
D. 502.4 acres
7. Machinery: A utility tractor is re-equipped with high profile tires (larger diameter than the factory equipped tires). If the original tires had a 38.9 -inch outside diameter and the new larger tires have a 44.6-inch outside diameter, what is the actual speed of the tractor when the tractor's mechanical speedometer displays 25 miles per hour? Assume all tires are properly inflated, tires have no slippage, and the speedometer is still calibrated for the smaller diameter tires.
Information: Circumference of a circle $=(2) \times(\pi) \times$ (radius) $\quad \pi=3.14 \quad$ diameter of circle $=(2) \times$ (radius)
A. 22.6 mph
B. 25.7 mph
C. 23.6 mph
D. 28.7 mph

```
Answer: Two step complicated method:
rpm = 25 mi / hr x 5280'/ 1 mi x 1 hr / 60 min] }\div[(3.14 x 38.9" x 1' / 12")/rev = 216.1347896 rpm
mph = [(3.14 x 44.6" x 1'/12")/ rev] x 1 mi/5280' x 60 min / hr x 216.1347896 rpm = 28,663239 mph
Simple method: [44.6" }\div38.9"] x 25 mph = 28.66324 mph
```

8. Electrical: The monthly charge to operate an electric pump is $\mathbf{1 2 . 7 5}$ cents per kilowatt hour (kWh) for the first $\mathbf{1 0 0 0}$ hours and 13.9 cents for each $\mathbf{k W h}$ greater than $\mathbf{1 0 0 0}$ hours. If the pump uses $\mathbf{9 . 2 5}$ kilowatts per hour and it operates 25 days each month for $\mathbf{8}$ hours each day, what is the approximate monthly kWh charge to operate the pump? Information: 1 kilowatt $=1000$ Watts 100 cents $=\$ 1.00$
A. $\$ 154.50$
B. $\$ 189.65$
$\mathrm{kWh} /$ month $=9.25 \mathrm{~kW} \times 25$ days $/ \mathrm{mth} \times 8 \mathrm{hrs} /$ day $=1850 \mathrm{kWh} / \mathrm{mth}$
$\$=(1000 \mathrm{kWh} / \mathrm{mth} \times \$ 0.1275 / \mathrm{kWh})+[(1850 \mathrm{kWh} / \mathrm{mth}-1000 \mathrm{kWh} / \mathrm{mth}) \times \$ 0.139 / \mathrm{kWh}]=\$ 245.65$
C. $\$ 219.50$
D. $\$ 245.65$ \qquad
9. Compact Equipment: A planter has a 24-foot effective swath width, it travels at 5.25 miles per hour, and it operates with a field efficiency of $\mathbf{8 8 . 5}$ percent. What is the approximate effective field capacity (EFC) of the planter in acres per hour?

Information: EFC $=$ width of implement in feet x speed in miles per hour x efficiency 8.25
A. 13.5 acres per hour
B. 17.9 acres per hour
$13.51636 \mathrm{ac} / \mathrm{hr}=(24 \mathrm{ft} \times 5.25 \mathrm{mph} \times 0.885) / 8.25$
C. 21.5 acres per hour
D. 24.9 acres per hour
10. Structural: Which of the following will have the greatest weight: $\mathbf{0 . 0 0 3 9}$ acre-feet of water, 170 cubic-feet of water, $\mathbf{1 2 7 5}$ gallons of water, or $\mathbf{4 8 5 0}$ liters of water?
Information: 1 cubic foot of water $=62.43$ pounds
1 gallon of water $=8.34$ pounds
1 liter of water $=2.20$ pounds $\quad 1$ acre-foot water $=43,560$ cubic feet of water
A. 0.0039 acre feet of water
B. 170 cubic-feet of water
C. 1275 gallons of water
D. 4850 liters of water

```
Answer: \(0.0039 \mathrm{ac}-\mathrm{ft} \mathrm{x} 43,560 \mathrm{ft}^{3} / \mathrm{ac}-\mathrm{ft} \times 62.43 \mathrm{lbs} / \mathrm{ft}^{3}=10,605.9 \mathrm{lbs}\)
    \(170 \mathrm{ft}^{3} \times 62.43 \mathrm{lbs} / \mathrm{ft}^{3}=10,613.1 \mathrm{lbs}\)
    1275 gal \(\times 8.34 \mathrm{lbs} / \mathrm{gal}=10,633.5 \mathrm{lbs}\)
    4850 lit x \(2.2 \mathrm{lbs} /\) lit \(=10,670 \mathrm{lbs}\)
```

11. Structural: Which of the following quantities of lumber has the greatest number of board-feet?

1 board-foot $=144$ cubic inches
1 square foot $=144$ square inches
A. 6 boards measuring 2 inches by 10 inches by 10 feet
B. 9 boards measuring 2 inches by 6 inches by 12 feet
C. 12 boards measuring 1 inch by 8 inches by 12 feet
D. 12 boards measuring 1 inches by 10 inches by 10 feet

Nominal Measurement Comparison (same answer for actual) $6 \times 2^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=100 \mathrm{bd}-\mathrm{ft}$ $9 \times 2^{\prime \prime} \times 6^{\prime \prime} \times 12^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=108 \mathrm{bd}-\mathrm{ft} * * *$ $12 \times 1^{\prime \prime} \times 8^{\prime \prime} \times 12^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=96 \mathrm{bd}-\mathrm{ft}$ $12 \times 1^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=100 \mathrm{bd}-\mathrm{ft}$
12. Environmental: The Universal Soil Loss Equation is composed of six factors to predict the longterm average annual soil loss and one of those values is the slope of the land area expressed as a percentage. What is the approximate slope (percentage) of the land that changes elevation from 2255 feet to $\mathbf{1 8 7 6}$ feet over a distance of $\mathbf{1 . 5 8}$ miles? Slope $=$ Rise $\div \operatorname{Run} x(100 \% / 1)$
A. 4.54%
B. 5.54%
C. 6.54%

```
Slope = (2255` - 1876') \div( 1.58 miles x 5,280 ft./mi.) x 100% / 1
```

Slope $=4.54306 \%$
D. 7.51%
13. Machinery: What is the approximate speed, in miles per hour, for a fertilizer spreader that travels 200 yards in $\mathbf{4 3 . 5}$ seconds?
$5,280 \mathrm{ft}=1$ mile $\quad 60$ seconds $=1$ minute $\quad 60$ minutes $=1$ hour $\quad 1$ foot $=0.3048$ meter
A. 6.1 miles per hour
B. 7.4 miles per hour
C. 8.1 miles per hour
$(200 \mathrm{yds} / 43.5 \mathrm{sec}) \times(3 \mathrm{ft} / 1 \mathrm{yd}) \mathrm{x}(60 \mathrm{sec} . / \mathrm{min} . \mathrm{x} 60 \mathrm{~min}$. $/ 1 \mathrm{hr}) \mathrm{x}(1 \mathrm{mi} / 5,280 \mathrm{ft})$
Speed $=9.404389 \mathrm{mph}$
D. 9.4 miles per hour
14. Electrical: An electric water heater uses 1910 kilowatt-hours ($\mathbf{k W h}$) of power each day. If electric power cost 14.75 cents per kWh , approximately how much energy (in therms) does this water heater use during 60 days of operation? Information: $1 \mathrm{kWh}=3412$ BTUs of energy 1 therm of energy $=100,000$ BTUs of energy
A. 2280 therms
B. 2810 therms
C. 3380 therms
D. 3910 therms

$$
\begin{array}{r}
1910 \mathrm{kWh} / \text { day x } 60 \text { days x } 3412 \text { Btus / kWh x } 1 \text { therm / 100,000 BTUs }= \\
3910.152 \text { therms }
\end{array}
$$

15. Compact Equipment: Each cylinder in a four cylinder engine has a circumference of $\mathbf{1 1 . 6}$ inches and a piston stroke of 6.5 inches. What is the approximate total displacement of the engine in liters?
Information: $\quad 1$ liter $=61$ cubic inches \quad Circumference of a circle $=2 \times \pi \times$ radius
Area of a cylinder bore $=\pi \times$ radius $^{2} \quad \pi=3.14 \quad$ radius $=$ diameter $\div 2$
Displacement of a single cylinder $=$ (length of piston stroke) x (the area of the cylinder bore)
A. 3.6 liters
B. 4.1 liters
C. 4.6 liters
D. 5.1 liters
16. Compact Equipment: A gasoline mower's power takeoff (PTO) produces 25 horsepower and turns at 1000 revolutions per minute. Approximately how much torque, in foot-pounds, can this PTO produce?

$$
\text { Torque in foot-pounds }=\frac{\text { PTO Horsepower } \times 5252}{\text { Revolutionc } / \text { Minute }}
$$

A. 85.2 foot-pounds
B. 100.3 foot-pounds
C. 115.2 foot-pounds

```
25 hp x 5252 \div 1000 rpms = 131.3 ft-lbs
```

D. 131.3 foot-pounds
17. Structural: Concrete is poured inside a vertical pipe to provide rigidity to the pipe. If 1.25 cubic yards of concrete are needed to fill the pipe that is 12 feet 5 inches tall, what is the approximate inside diameter of the pipe in inches?
1 cubic yard $=27$ cubic feet $\quad 1$ cubic foot $=1728$ cubic inches $\quad 1$ foot $=12$ inches
Volume of cylinder $=\pi \times$ (cylinder radius $^{2} \times$ cylinder height $\quad \pi=3.14 \quad$ diameter $=(2 \times$ radius $)$
A. 16.33 inches
B. 19.55 inches
C. 22.33 inches
D. 25.55 inches

```
\(1.25 \mathrm{yd}^{3}=3.14 \mathrm{x}\left(\text { diameter } \div 2 \mathrm{x} 1^{\prime} / 1^{\prime \prime}\right)^{2} \mathrm{x} 12.41667 \mathrm{x}\left(1 \mathrm{yd}^{3} / 27 \mathrm{ft}^{3}\right)\)
diameter \(=\left(\sqrt{1.25 \mathrm{yd}^{3} \times 27 \mathrm{ft}^{3} / 1 \mathrm{yd}^{3} \div 3.14 \div 12.41667^{\prime}}\right) \times 2 \times 12^{\prime \prime} / 1^{\prime}\),
diameter \(=22.329589^{\prime \prime}\)
```

18. Environmental: A thermometer calibrated in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ is used to measure the temperature during a feed processing operation that requires heating to 240 degrees Fahrenheit $\left({ }^{\circ} \mathbf{F}\right)$. What temperature on the Celsius thermometer is approximately equal to $240{ }^{\circ} \mathrm{F}$?
Information: $\quad{ }^{\circ} \mathrm{F}=\left(9 / 5{ }^{\circ} \mathrm{C}\right)+32 \quad{ }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right) \quad$ Water freezes at $32{ }^{\circ} \mathrm{F}$
A. $155.2^{\circ} \mathrm{C}$
B. $175.6^{\circ} \mathrm{C}$

$$
{ }^{\circ} \mathrm{C}=5 / 9 \times\left(240^{\circ} \mathrm{F}-32^{\circ}\right) \rightarrow \boldsymbol{\rightarrow} \quad 115.555556^{\circ} \mathrm{C}
$$

C. $195.2{ }^{\circ} \mathrm{C}$
D. $115.6^{\circ} \mathrm{C}$
19. Machinery: Each of two hydraulic cylinders raise and lower the arms that operate the bucket on a skid steer loader. Each cylinder has a bore diameter of 3.25 inches and a stroke of 36 inches. The tractor's hydraulic system produces a maximum pressure of $\mathbf{3 , 6 0 0}$ pounds per square inch. Approximately, what is the maximum combined force that these two cylinders can exert on the lift arms? Area of a cylinder bore $=(\pi) \times(\text { radius })^{2}$
$\pi=3.14$
Force $=$ Pressure x Area \quad radius $=($ diameter $\div 2)$
A. 24,699 pounds
B. 29,699 pounds

Force $=2 \times$ Pressure \times Area $=2 \times 3,600 \mathrm{lb}_{\mathrm{lin}}{ }^{2} \times 3.14 \times(3.25 \mathrm{in} . / 2)^{2}=59.699 .25 \mathrm{lbs}$
C. 44,699 pounds
D. 59,699 pounds
20. Electrical: A farm building that is poorly insulated is located in a zone of the U.S. that typically requires 45 BTUs per square-foot of floor area to adequately heat the interior. If the interior dimension of the rectangular building is $\mathbf{8 0}$ feet by $\mathbf{2 4}$ feet and the model of furnace being purchased is $\mathbf{9 0 \%}$ efficient, what approximate size furnace is required? Information: Furnace output is rated in British Thermal Units (BTUs)
1 yard $=3$ feet
Furnace Size in BTUs $=$ Number of square feet x Number of BTUs per square foot Furnace Efficiency
A. 88,000 BTUs
B. 96,000 BTUs
C. 104,000 BTUs

```
Furnace Size = 80' x 24' yd x 45 BTUs/sq ft }=96,000 BTU
```

D. 110,000 BTUs
21. Electrical: The interior electrical lighting of a farm structure is being replaced with high efficiency lighting. The 36 incandescent, 100-Watt lights will be replaced with 36 LED, 40-Watt lights. If the lights are operated 100 hours per month and electricity cost 12.75 cents per kilowatt-hour ($\mathbf{k W h}$), what is the approximate reduction in electrical power costs each month? 1000 Watts $=1$ kilowatt
A. $\$ 27.54$
$\$$ saving $/ \mathrm{mth}=(100 \mathrm{~W}-40 \mathrm{~W}) \times \$ 0.1275 / \mathrm{kwh} \times 100 \mathrm{hrs} / \mathrm{mth} \times 36$ lights $\times 1 \mathrm{kwh} / 1000 \mathrm{~W}=\$ 27.54$
B. $\$ 31.45$
C. $\$ 36.54$
D. $\$ 40.45$
22. Compact Equipment: A rectangular shaped plastic hopper is used to transport granular fertilizer in bulk. This hopper is transported on a trailer with a 4500 -pound maximum load carrying capacity. The internal dimensions of the hopper are $\mathbf{7 . 2 5}$ feet wide, $\mathbf{8 . 2 5}$ feet long and 4.5 feet deep. What is the maximum weight in pounds per cubic foot (approximate value) that granular fertilizer can weigh and completely fill the hopper, while still transporting the load within safe limits? 1 gallon $=231$ cubic inches $\quad 1$ cubic-foot $=1728$ cubic-inches Volume of rectangular prism $=$ Length \times Width \times Height
A. $16.7 \mathrm{lbs} / \mathrm{ft}^{3}$
B. $19.6 \mathrm{lbs} / \mathrm{ft}^{3}$

C. $23.7 \mathrm{lbs} / \mathrm{ft}^{3}$

D. $27.6 \mathrm{lbs} / \mathrm{ft}^{3}$
23. Structural: Intake and/or exhaust fans should have the capacity in cubic feet per minute to adequate exchange the air in a greenhouse every three minutes. The rectangular floor of the greenhouse measures 36 feet by 60 feet and the walls/roof is made of plastic sheeting stretched over plastic pipe hoops positioned as half circles. The hoops give the greenhouse a perfect half cylinder shape with each half-circle hoop having a diameter of 36 feet. In cubic feet per minute, what is the approximate size fan needed to ventilate the greenhouse? Volume of a cylinder $=(\pi) \mathrm{X}$ (radius) ${ }^{2} \mathrm{x}$ length
A. 4,347.2 cubic feet per minute
B. $6,173.6$ cubic feet per minute
C. 8,347.2 cubic feet per minute
D. $10,173.6$ cubic feet per minute

CFM $=1 / 3 \times 1 / 2\left[3.14 \times\left(36^{\prime} \div 2\right)^{2} \times 60^{\prime}\right]$ $C F M=10,173.6 \mathrm{ft}^{3} / \mathrm{min}$.

End view of Greenhouse
24. Environmental: A 21 -foot length of unthreaded black pipe is to be cut into 11 pieces of equal length. Both ends of the 21-foot pipe are already cut square ($\mathbf{9 0}$ degrees) and the $\mathbf{1 1}$ pieces will also have square cut ends. The metal saw being used cuts a kerf (material removed by saw blade) that is $\mathbf{1 / 8}$ inch wide. Other than the material lost by the saw kerf, none of the pipe is wasted or unused in cutting the 11 pieces of equal length. What is the approximate length (in feet, inches and fraction of an inch) of each piece of the pipe. Information: 1 foot $=12$ inches $5 / 32$ inch $=0.15625$ inch
A. 1 foot, 4 and $25 / 32$ inches
B. 1 foot, 6 and $25 / 32$ inches
C. 1 foot, 8 and $25 / 32$ inches
D. 1 foot, 10 and $25 / 32$ inches

```
[(21 feet }\times12"/ft) = (10 cuts \times1/8"/cut)] \div11 pieces = 22.79545455"
->1 foot 10 inches + 0.79545455 inch }\quad->\quad\mp@subsup{1}{}{\prime}1\mp@subsup{0}{}{\prime\prime}+\approx25/32"
>>\approx1'10~25/32'
```

25. Machinery: A water pump has a 6.75 -inch diameter pulley that must turn at 1150 revolutions per minute (rpm). The shaft of an electric motor rotates at 1725 rpm and powers the belt that operates the pump. What is the approximate diameter of the pulley needed on the motor shaft to turn the pump at 1150 rpms?

Pulley Size Formula: (Diameter of Pulley $1 \times$ Speed of Pulley 1) $=($ Diameter of Pulley $2 \times$ Speed of Pulley 2)
A. 4.00-inch diameter pulley
B. 4.25 -inch diameter pulley
C. 4.50-inch diameter pulley
D. 4.75-inch diameter pulley

STUDENTS DO NOT OPEN THIS TEST OR BEGIN UNTIL INSTRUCTED TO START

2019 Examination for the

National Agricultural Technology and Mechanical Systems
Career Development Event

Answer Key Do Not Distribute

- If a diagram, picture, or table is needed to answer a question, the question will refer to the appropriate figure/page.
- Read each question carefully and determine the single correct answer.
- If a mark on the scan sheet needs to be changed, completely erase the incorrect answer and clearly mark the appropriate answer on the answer sheet.
- Each student needs a calculator to complete this examination, but calculators may not be shared between students.
- Formulas and conversion values are provided. Do not round off intermediate answers when using the calculator to solve these problems.

Students are NOT allowed to use any type of electronic communication device, including but not limited to cellular telephones, pagers, two way radios, or PDAs, during the CDE on Wednesday or Thursday. If a student uses, handles, or accesses any type of electronic communication device, she or he may be disqualified. If a personal emergency should arise during the CDE, students should contact a CDE official immediately for assistance.

Order, Point Assignment, and Competency Alignment* for Exam Questions (2 points each)

1. Machinery 1.16, 6.1, 6.4-7	6. Environmental 4.17, 4.18, 4.19, 6.1, 6.4-7	11. Structural $5.1,5.2,5.3,5.22,6.1,6.4-7$	16. Compact Equipment $3.1,3.4,3.15,3.21,6.1,6.4-7$	21. Electrical 2.4. 2.6, 2.7, 2.10, 6.1, 6.4-7
2. Electrical ${ }^{\text {2.4, 6.1, 6.4-7 }}$	7. Machinery $1.14,1.16,1.17,6.1,6.4-7$	12. Environmental $4.2,4.11,6.1,6.4-7$	17. Structural $5.1,5.2,5.3,5.4,6.1,6.4-7$	22. Compact Equipment $3.1,3.15,3.21,6.1,6.4-7$
3. Compact Equipment 3.1, 3.4, 6.1, 6.4-7	8. Electrical ${ }_{\text {2.4, 2.10, 6.1, 6.4-7 }}$	13. Machinery $1.16,1.17,6.1,6.4-7$	18. Environmental $4.15,4.18,6.1,6.4-7$	23. Structural $5.1,5.3,5.6,6.1,6.4-7$
4. Structural $5.2,5.22,6.1,6.4-7$	9. Compact Equipment 6.1, 6.4-7	14. Electrical $\begin{aligned} & \text { 2.4, 2.11, 6.1, 6.4-7 }\end{aligned}$	19. Machinery ${ }^{\text {1.17, 3.5, 6.1, 6.4-7 }}$	24. Environmental 1.16, 4.2, 4.4, 4.5, 4.14, 4.18, 6.1, 6.4-7
5. Environmental $4.2,4.4,4.14,6.4-7$	10. Structural $5.2,6.1,6.4-7$	15. Compact Equipment $3.15,6.1,6.4-7$	20. Electrical $\quad 2.1,2.11,6.1,6.4-7$	25. Machinery $1.15,1.16,1.17,6.1,6.4-7$

This exam begins on the back of this sheet.

2019 Written Examination for the National Agricultural Technology \& Mechanical Systems Career Development Event

Mark all answers on the scan sheet using a pencil. Read each question carefully and mark the single correct answer on the scan sheet. Each student needs a calculator to complete this examination, but calculators may not be shared between students. Information written on this exam will not be graded.

1. Machinery: Approximately how many acres are in a rectangular field measuring $\mathbf{5 , 0 4 0}$ meters by 4,867 yards? $\quad 1$ acre $=43,560$ square feet $\quad 1$ hectare $=2.47$ acres 1 acre $=0.4045$ Hectares Area of Rectangle $=$ length x width $\quad 1$ mile $=5,280$ feet $\quad 1$ foot $=0.3048$ meter
A. 394.6 acres
B. 474.6 acres
C. 554.3 acres
$5040 \mathrm{~m} \times 1 \mathrm{ft} / 0.3048 \mathrm{~m} \times 486.7 \mathrm{yd} \times 3 \mathrm{ft} / 1 \mathrm{yd} \times 1 \mathrm{ac} / 43,560 \mathrm{ft}^{2}=554.25587 \mathrm{ac}$
D. 684.3 acres
2. Electrical: A variety of incandescent lights are all operating on a single 120-volt electrical circuit in a livestock barn. The circuit includes two 200-watt lights, four $\mathbf{1 0 0}$-watt lights, and five $\mathbf{6 0}$-watt lights. What is the amperage of the circuit with all of these lights operating?

Total Wattage $=$ Voltage \times Amperage
A. 5.6 amps
B. 6.3 amps
C. 8.7 amps
D. 9.2 amps

```
\(\mathrm{W}=\mathrm{V} \times \mathrm{A}\)
\((2 \times 200\) Watts \()+(4 \times 100\) Watts \()+(5 \times 60\) Watts \()=120\) volts \(\times \mathrm{amps}\)
\(\mathrm{amps}=9.16667 \mathrm{amps}\)
```

3. Compact Equipment: A 100 horsepower six-cylinder engine is operating at $\mathbf{5 , 4 0 0}$ feet above sea level. What approximate horsepower can be produced by the engine if the engine's power is reduced 1.5 percent for each $\mathbf{1 0 0 0}$ feet of elevation above sea level?
A. 91.9 horsepower
B. 93.8 horsepower
```
100 horsepower - [ 100 hp x 5400 ft x (0.015 / 1000 ft)] = 91.9 hp
```

C. 95.7 horsepower
D. 97.6 horsepower
4. Structural: Steel angle iron is sold for $\$ 1.16$ per linear foot, steel rod is sold for $\mathbf{8 8}$ cents per linear foot, and steel pipe is sold for $\mathbf{\$ 2 . 4 4}$ per linear foot. If $\mathbf{2 5 . 8}$ feet of angle iron, 19 feet of rod, and 231 inches of pipe are purchased, and 7% taxes are paid with the purchase, what is the approximate total price for the metal?
A. \$ 90.17
B. $\$ 95.11$
C. $\$ 100.17$
D. $\$ 105.11$

```
25.8' x $ 1.16/ft = $ 29.928
19' x $ 0.88/ft = $ 16.72
231" x 1 ft / 12" x $ 2.44/ft = $ 46.97 Total = $ 93.618
$ 93.618 x 1.07 tax = $ 100.17126
```

5. Environmental: A rectangular shaped plastic hopper is used to transport granular pesticide in bulk. This hopper is transported on a trailer with a 4,500-pound maximum load carrying capacity in addition to the weight of the hopper. The internal dimensions of the hopper are $\mathbf{7 . 7 5}$ feet wide, 11.75 feet long and 5.25 feet deep. What is the maximum weight in pounds per cubic foot (approximate value) that granular pesticide can weigh, completely fill the hopper, and still transport within safe load carrying limits?
1 gallon $=231$ cubic inches $\quad 1$ cubic-foot $=1728$ cubic-inches
Volume of rectangular prism $=$ Length \times Width \times Height
A. $7.3 \mathrm{lbs} / \mathrm{ft}^{3}$
B. $7.7 \mathrm{lbs} / \mathrm{ft}^{3}$

Picture of rectangular prism
C. $8.1 \mathrm{lbs} / \mathrm{ft}^{3}$
D. $9.4 \mathrm{lbs} / \mathrm{ft}^{3}$

6. Environmental: If a center pivot irrigation system is 0.25 mile long (has a 0.25 mile radius), approximately how many acres can be irrigated under 270 degrees of the pivot's travel?
Area of a circle $=(\pi) \times(\text { radius })^{2}$
$\pi=3.14$
diameter $=2 \times$ radius
1 acre $=43,560$ square feet
1 mile $=5,280$ feet
A. 60.5 acres
B. 71.4 acres

$$
\text { Acres }=3 / 4 \times 3.14 \times\left(0.25 \mathrm{mi} \times 5280 \mathrm{ft} / \mathrm{mi}^{2}\right)^{2} \times 1 \mathrm{ac} / 43,560 \mathrm{ft}^{2}=94.2 \underline{\mathrm{ac}}
$$

C. 83.3 acres
D. 94.2 acres
7. Machinery: Each cylinder in a six cylinder tractor engine has a bore (diameter) of 4.56 inches and a piston stroke of 6.45 inches. What is the approximate total displacement of this engine in liters?
Area of a cylinder bore $=(\pi) \times(\text { radius })^{2} \quad \pi=3.14 \quad$ radius $=($ diameter $\div 2)$
Volumetric displacement of a single cylinder $=$ (length of piston stroke) x (the area of the cylinder bore)
1 liter $=61$ cubic inches $\quad 1$ cubic inch $=0.0164$ liter
A. 7.4 liters
B. 8.4 liters
$6 \mathrm{cyl} \times 3.14 \times(4.56 \mathrm{in} / 2)^{2} \times 6.45 \mathrm{in} \times\left(1 \mathrm{~L} / 61 \mathrm{in}^{3}\right)=10.3557 \mathrm{~L}$
C. 9.4 liters
D. 10.4 liters
8. Electrical: The interior electrical lighting of a farm structure is being replaced with high efficiency lighting. The 36 incandescent, 150-Watt lights will be replaced with 24 LED, 60 -Watt lights. If the lights are operated 105 hours each month and electricity cost $\mathbf{1 1 . 7 4}$ cents per kilowatt-hour (kWh), what is the approximate reduction in electrical power costs each month? 1000 Watts $=1$ kilowatt
A. $\$ 48.81$
$\$$ saving $/ \mathrm{mth}=[(36$ lights $\times 150 \mathrm{~W})-(24$ lights $\times 60 \mathrm{~W})] \times \$ 0.1174 / \mathrm{kwh} \times 105 \mathrm{hrs} / \mathrm{mth} \times 1 \mathrm{kwh} / 1000$
B. $\$ 50.61$ $\mathrm{W}=\$ 48.81492$
C. $\$ 52.41$
D. $\$ 54.21$
9. Compact Equipment: Which of the following will have the lowest weight in pounds: $\mathbf{5 . 4 7}$ gallons of gasoline, 4.97 gallons of diesel, 4.71 gallons of $15 \mathrm{~W}-40$ engine oil, or $\mathbf{4 . 7 2}$ gallons of automatic transmission fluid?

1 gallon of gasoline $=6.3$ pounds
1 gallon $15 \mathrm{~W}-40$ engine oil $=7.3$ pounds
A. 5.37 gallons of gasoline
B. 4.97 gallons of diesel
C. 5.71 gallons of $15 \mathrm{~W}-40$ engine oil
D. 4.72 gallons of automatic transmission fluid

1 gallon of diesel $=6.943$ pounds
1 gallon automatic transmission fluid $=7.298$ pounds
10. Structural: Which of the following quantities of lumber has the greatest number of board-feet?

1 board-foot $=144$ cubic inches
1 square foot $=144$ square inches
A. 20 boards measuring 1 inches by 10 inches by 10 feet
B. 20 boards measuring 1 inch by 8 inches by 12 feet
C. 14 boards measuring 2 inches by 6 inches by 12 feet
D. 10 boards measuring 2 inches by 10 inches by 10 feet

Nominal Measurement Comparison (same answer for actual) $20 \times 1^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=166.67 \mathrm{bd}-\mathrm{ft}$ $20 \times 1^{\prime \prime} \times 8^{\prime \prime} \times 12^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=160$ bd-ft $* * *$ $14 \times 2^{\prime \prime} \times 6^{\prime \prime} \times 12^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=168 _$bd- ft $10 \times 2^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=166.67 \mathrm{bd}-\mathrm{ft}$
11. Structural: The round support column (cylinder) in a building is a vertical steel pipe with an outside diameter of 36 inches. The pipe has a wall thickness of $1 / 2$ " and will be filled with concrete. If the 18foot tall pipe is to be completely filled, approximately how many cubic-yards of concrete are needed? Volume of cylinder $=(\pi) \times$ (radius) ${ }^{2} \times$ height $\quad \pi=3.14 \quad$ radius $=($ diameter $\div 2) \quad 27$ cubic feet $=1$ cubic yard
A. 3.55 cubic yards
B. 3.85 cubic yards
C. 4.15 cubic yards
D. 4.45 cubic yards

```
Radius = (36"-1/2" - 1/2") \div2 = (36"-0.5" - 0.5") \div2 = 17.5"
Radius = 17.5" x 1'/ 12" = 1.458333333'
Vol. of Cylinder = \pi x r r x h = m x (1.458333333') 2 x 18' = 120.2640939 ft }\mp@subsup{}{}{3
Cubic-Yards of Concrete = 120.2640939 ft` x (1 yd
```

12. Environmental: A tractor fueled by No. 2 diesel burns 8.45 gallons per hour. When the same tractor is fueled with B20 biodiesel it burns 75 gallons of fuel in eight hours. Approximately what percentage does the gallons of fuel per hour (consumption) increase when the tractor is fueled by B20 biodiesel rather than No. 2 diesel?
A. 9.95 percent
B. 10.95 percent
C. 11.95 percent
D. 12.95 percent
```
Gallons Increase per hour =(75 gal / 8 hrs ) - (8.45 gal/hr) = 0.925 gallons/hr increase
%=0.925 gal / 8.45 gal = 0.1094674556 = 10.94674556%
```

13. Machinery: What is the approximate speed, in miles per hour, for a fertilizer spreader that travels 115 meters in 1 minute and 9 seconds?
$5,280 \mathrm{ft}=1 \mathrm{mile}$
60 seconds = 1 minute
60 minutes $=1$ hour
1 foot $=0.3048$ meter
A. 2.7 miles per hour
B. 3.2 miles per hour
$(115 \mathrm{~m} / 69 \mathrm{sec}) \times(1 \mathrm{ft} / 0.3048 \mathrm{~m}) \times(60 \mathrm{sec} . / \mathrm{min} . \times 60 \mathrm{~min} . / 1 \mathrm{hr}) \times(1 \mathrm{mi} / 5,280 \mathrm{ft})$ Speed $=3.728 \mathrm{mph}$
C. 3.7 miles per hour
D. 4.2 miles per hour
14. Electrical: A 240-volt air conditioning unit uses $\mathbf{1 2 4}$ kilowatt hours of power during $\mathbf{2 4}$ hours of operation. What is the approximate size of this air conditioning unit in tons of refrigeration (disregard efficiency)? One ton of air conditioning removes heat at the rate equivalent to melting one ton of ice during a period of 24 hours.

Information: British Thermal Unit (BTU): 3412.14 BTUs $=1$ kilowatt hour
1 Ton of Refrigeration $=12,000 \mathrm{BTUs} /$ hour (the rate of heat removal)
A. Three-Quarter Ton
B. One Ton
C. One and One-Half Tons
D. Two Tons

$$
\begin{array}{r}
\text { Ton }_{\text {Refrigeration }}^{=} \frac{3412.14 \text { BTUs }}{1 \mathrm{kwh}} \times \frac{1 \text { Ton }}{12,000 \text { BTUs } / \mathrm{hr}} \times \frac{124 \mathrm{kwh}}{24 \mathrm{hrs}} \\
\gg=1.46912 \text { Ton Refrigeration } \mathrm{or} 1.5 \text { Ton Unit }
\end{array}
$$

15. Compact Equipment: An engine manual requires each head bolt to be torqued to 16 Newton meters ($\mathbf{N m}$) during reassembly. The torque wrench available is calibrated in foot pounds (ft. lbs.). What approximate torque in ft. lbs. is equivalent to 13 Nm ?

$$
\begin{aligned}
& \text { 4.44822 Newtons }=1 \text { pound force } \quad 0.22481 \text { pound force }=1 \text { Newton } \\
& 1 \text { meter }=3.28084 \text { feet }
\end{aligned} 1 \text { foot }=0.3048 \text { meters } \quad l
$$

A. $8.6 \mathrm{ft} . \mathrm{lbs}$.
B. $\quad 9.2 \mathrm{ft}$. lbs.
C. $9.6 \mathrm{ft} . \mathrm{lbs}$.
D. $10.2 \mathrm{ft} . \mathrm{lbs}$.

```
13 Nm x 0.22481 lbs/1 N x 3.28084 ft/ 1 m = 9.58835 ft. lbs
Or
13 Nm x 1 lbs/4.44822 N x 1 ft/0.3048 m = 9.58835 ft. lbs.
```

16. Compact Equipment: A gasoline mower's power takeoff (PTO) produces 20 horsepower and turns at 540 revolutions per minute. Approximately how much torque, in foot-pounds, can this PTO produce? Torque in foot-pounds $=\frac{\text { PTO Horsepower } \times 5252}{\text { Revolutions } / \text { Minute }}$
A. 194.5 foot-pounds
B. 204.3 foot-pounds
C. 214.5 foot-pounds
```
20 hp x 5252 }\div540\textrm{rpms}=194.5185 ft-lb
```

D. 224.3 foot-pounds
17. Structural: A storage tank is shaped like a capsule with the following internal dimensions. The radius of the one-half spheres on each end are 21~9/32" and the height of the cylinder section is $\mathbf{6}^{\prime} 9 \mathbf{9 5} / 16$ ". What is the approximate internal volume in gallons for this tank? diameter $=(2 \times$ radius $)$ Volume of cylinder $=\pi \times$ (cylinder radius $^{2} \times$ cylinder height $\quad \pi=3.14 \quad 1$ gallon $=231$ cubic inches
A. 642.1 gallons
Volume of sphere $=4 / 3 \times \pi \times(\text { cylinder radius })^{3}$
B. 679.1 gallons
C. 742.1 gallons
D. 779.1 gallons

```
r = 21~9/32" = 21.28125" and h = 6' 9~15/16" = 81.9375"
Vol. of Tank = {[3.14 x (21.28125") }\mp@subsup{)}{}{2}\times81.9375"] + [4/3 x 3.14 x (21.28125") 3 ]} x 1 gal/231 in 3',
```



```
Vol. of Tank = 156,873.1591 in }\mp@subsup{}{}{3}\quad\textrm{x}1\textrm{gal}/231 \mp@subsup{\textrm{in}}{}{3
Vol. of Tank = 679.1045847 gal
```

18. Environmental: A pesticide label specifies that 0.75 pint of pesticide concentration, mixed with 25 gallons of water, are to be applied per acre. Approximately how many gallons of pesticide concentration are required to treat a $\mathbf{5 2 2}$-acre field?

$$
128 \text { ounces }=1 \text { gal } \quad 16 \text { ounces }=1 \text { pint }
$$

A. 39 gallons
B. 44 gallons

```
Gallons =[(0.75 pts / ac) x (16 oz / pt) x (1 gal / 128 oz) x (522 acres)]
\[
=48.9375 \text { gallons }
\]
```

C. 49 gallons
D. 54 gallons
19. A tractor produces 250 PTO horsepower at a rated power take-off speed of 1000 revolutions per minute. How much torque in foot-pounds does the tractor produce at the power take-off shaft?

PTO Power $=$ Torque \times Rotational Speed $\div 5252$
A. $1,182 \mathrm{lb}-\mathrm{ft}$
B. $1,313 \mathrm{lb}-\mathrm{ft}$
C. $1,461 \mathrm{lb}-\mathrm{ft}$
D. $1,592 \mathrm{lb}-\mathrm{ft}$

```
Torque = 5252 x 250 / 1000
    = 1,313 lb-ft
```

20. Electrical: A 120-volt electrical circuit will operate a 2400-watt resistance heater and ten 300-watt incandescent light bulbs. If the circuit is operated 10 hours each day for $\mathbf{3 0 0}$ days, how many kilowatt-hours will the electrical system use during the time period?

$$
\text { Note: } \text { Kilowatt-hours }=\frac{\text { Total Watts } x \text { Total hours }}{1000 \text { Watts/Kilowatt }}
$$

A. 10,200 kilowatt-hours
B. 12,200 kilowatt-hours
C. 14,200 kilowatt-hours

$$
\begin{aligned}
\text { Kilowatts-hours } & =[(2400 \text { Watts }+3000 \text { Watts) x } 10 \text { hours/day x } 300 \text { days }] / 1000 \text { Watts/kilowatt } \\
& =16,200 \mathrm{kwh}
\end{aligned}
$$

D. 16,200 kilowatt-hours
21. Electrical: The monthly charge to operate an electric pump is $\mathbf{1 3 . 7 5}$ cents per kilowatt hour ($\mathbf{k W h}$) for the first 1000 hours and 15.55 cents for each $\mathbf{k W h}$ greater than $\mathbf{1 0 0 0}$ hours. If this pump uses 2779 kWhs of electricity during a single month, what is the approximate monthly cost to operate the pump? Information: 1 kilowatt $=1000$ Watts 100 cents $=\$ 1.00 \quad 1$ hour $=60$ minutes
A. $\$ 415$

```
$ = ( 1000 hrs x $0.1375 / kWh ) + [(2779 Watts - 1000 Watts ) x $0.1555 / kWh] = $ 414.1345
```

B. $\$ 438$
C. $\$ 515$
D. $\$ 538$
22. Compact Equipment: A hydraulic cylinder that operates the arm of a skid steer loader has a bore diameter of 2.9 inches and a stroke of 36 inches. The tractor's hydraulic system produces a maximum pressure of $\mathbf{2 , 6 0 0}$ pounds per square inch. Approximately, what is the maximum force the cylinder can exert on the lift arm? Information: Area of a cylinder bore $=(\pi) \times$ (radius $^{\mathbf{2}} \quad \pi=3.14$

Force $=$ Pressure \times Area \quad radius $=($ diameter $\div 2)$
A. 12,042 pounds
B. 13,084 pounds

Force $=$ Pressure \times Area $=2,600 \mathrm{lb} / \mathrm{in}^{2} \times 3.14 \times(2.9 \mathrm{in} / 2)^{2}=17,164.81 \mathrm{lbs}$
C. 15,133 pounds
D. 17,165 pounds
23. Structural: An intake and/or exhaust fan should have the capacity in cubic feet per minute to completely exchange the air in a greenhouse every ten minutes. The rectangular floor of a greenhouse measures 30 feet by 60 feet and the walls and roof are made of plastic sheeting stretched over plastic pipe hoops positioned as half circles. The hoops give the greenhouse a perfect half cylinder shape with each hoop having a diameter of 30 feet. In cubic feet per minute, what is the approximate size fan needed to ventilate the greenhouse? Volume of a cylinder $=(\pi) \mathrm{X}$ (radius) ${ }^{\mathbf{2}} \mathrm{x}$ length
A. 2119.5 cubic feet per minute
B. 2669.5 cubic feet per minute
C. 3119.5 cubic feet per minute
D. 3669.5 cubic feet per minute

24. Environmental: If the average weight of wheat is 62.5 pounds per bushel, approximately how many bushels of wheat can be transported in a rail car with a maximum carrying capacity of 90 tons?
Information: 1 ton $=2000$ pounds
1 bushel 2.44 cubic feet
A. 2220 bushels

```
bu = 1 bu/62.5 lb x 90 T x 2000 lb/1 T = 2,880 bu
```

B. 2440 bushels
C. 2660 bushels
D. 2880 bushels
25. Machinery: A utility tractor is re-equipped with high profile tires (larger diameter than the factory equipped tires). If the original tires had a 40.5 -inch outside diameter and the new larger tires have a 43.9-inch outside diameter, what is the approximate speed of the tractor (miles per hour, with larger diameter tires) when the tractor's mechanical speedometer displays 10 miles per hour? Assume all tires are properly inflated, tires have no slippage, and the speedometer is still calibrated for the smaller diameter tires. \quad Circumference of a circle $=(2) \mathrm{x}(\pi) \times$ (radius) $\quad \pi=3.14 \quad$ diameter of circle $=(2) \mathrm{x}$ (radius)
A. $\quad 7.62 \mathrm{mph}$

Answer: Two step complicated method:
$\mathrm{rpm}=10 \mathrm{mi} / \mathrm{hr} \div\left[\left(3.14 \times 40.5^{\prime \prime} \times 1^{\prime} / 12^{\prime \prime}\right) / \mathrm{rev} \times 1 \mathrm{mi} / 5280^{\prime} \times 60 \mathrm{~min} / \mathrm{hr}\right]=83.03845244 \mathrm{rpm}$
$\mathrm{mph}=\left[\left(3.14 \times 43.9 " \mathrm{x} 1^{\prime} / 12^{\prime \prime}\right) / \mathrm{rev}\right] \times 1 \mathrm{mi} / 5280^{\prime} \times 60 \mathrm{~min} / \mathrm{hr} \times 83.03845244 \mathrm{rpm}=10.8395 \mathrm{mph}$ Simple method: $\left[43.9^{\prime \prime} \div 40.5^{\prime \prime}\right]$ x $10 \mathrm{mph}=10.8395 \mathrm{mph}$

[^0]: Nominal Measurement Comparison (same answer for actual) $10 \times 1^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=83.33 \mathrm{bd}-\mathrm{ft}$ $10 \times 1^{\prime \prime} \times 8^{\prime \prime} \times 12^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=80 \mathrm{bd}-\mathrm{ft} * * *$ $7 \times 2^{\prime \prime} \times 6^{\prime \prime} \times 12^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=84 _\mathrm{bd}-\mathrm{ft}$ $5 \times 2^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime} \times 12^{\prime \prime} / 1 \mathrm{ft} \times 1 \mathrm{bd}-\mathrm{ft} / 144 \mathrm{in}^{3}=83.33 \mathrm{bd}-\mathrm{ft}$

